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Highlights 

 
We provide a review of iris biometrics with Machine Learning techniques.  

 

We propose a taxonomy of Machine Learning techniques for iris recognition.  

 

We mention approaches ranging from neural networks to deep learning.  

 

We discuss some aspects related to the mentioned methods.  
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1. Introduction 

In the last 50 years, research related to computer science has 

attempted to replicate the (human) basic ability of recognition. 

This ability was specialized across the human evolution 

according to the different kinds of objects/situations requiring 

understanding (gesture, language, written symbols, concrete 

objects, peer friendly or adverse intent, etc.), or, generally 

speaking, problems of pattern recognition (PR). Robust 

recognition deals with distilling the wide appearance variety 

displayed by the objects surrounding us, in order to abstract the 

basic discriminative as well as characterizing features, allowing 

to generalize recognition results. Only meaningful information is 

retained, despite uncontrolled and changing settings, to avoid 

over-fitting and therefore lower the prediction risk. In this 

context, a fascinating possibility is not only that of reproducing 

the human capability of recognition, but even that of learning, 

especially related to the recognition itself. Machine learning 

(ML) evolved from the joint study of pattern recognition and 

computational learning theory, and is especially concerned with 

the implementation of computer applications that can learn and 

also make predictions on new data in a (possibly completely) 

autonomous way. In particular, in supervised learning the 

computer is trained with (positive and/or negative) example 

AB ST R ACT  

Iris recognition is one of the most promising fields in biometrics. Notwithstanding this, there are not so many research works 

addressing it by Machine Learning techniques. In this survey, we especially focus on recognition, and leave the detection and 

feature extraction problems in the background. However, the kind of features used to code the iris pattern may significantly 

influence the complexity of the methods and their performance. In other words, complexity affects learning, and iris patterns 

require relatively complex feature vectors, even if their size can be optimized. A cross-comparison of these two parameters, 

feature complexity vs. learning effectiveness, in the context of different learning algorithms, would require an unbiased common 

benchmark. Moreover, at present it is still very difficult to reproduce techniques and experiments due to the lack of either 

sufficient implementation details or reliable shared code. 

2015 Elsevier Ltd. All rights reserved. 
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inputs and their correct outputs, given by a human supervisor. 

The goal is to learn an adequately general rule that maps new 

inputs onto outputs. On the contrary, unsupervised learning 

requires that no labels are provided at all to the learning 

algorithm, that the aim is to find a meaningful structure, as well 

as a possibly hidden pattern (knowledge discovery), in the data 

fed as input. When there is no enough availability of labeled data, 

the combination of labeled data and a huge pool of unlabeled 

data can provide abundant resources for the learning paradigm 

that is referred to as semi-supervised learning.  Nearby (e.g., 

similar) points (e.g., object parts) are likely to share the same 

label (local constraints) and points on the same structure (cluster 

or manifold) are likely to share the same label (global 

constraints). It is worth noticing that supervised learning 

incorporates only local constraints, e.g., using k-NN. In this case, 

predictions/classifications are derived assuming that the data are 

generated independently by the same unknown probability 

distribution. In other words, it is supposed to deal with 

independent and identically distributed (i.i.d.) random variables, 

even if this assumption may be relaxed in some conditions (Vovk 

et al., 2005) or it is possible to directly infer the values of the 

classification function only at the points of interest using 

observations only (e.g., context-aware) (Vapnik, 2000). 

Biometrics reserves a peculiar role in PR: the recognition of 

human subjects by their physical (appearance) and/or behavioral 

(activity) traits is one of the most attractive but also useful task in 

many scenarios. In particular, appearance, mostly from still 

imagery but moving now to video, is one of the elements on 

which PR approaches have focused mostly. Appearance (e.g., 

physical biometrics) varies, while identity remains constant. 

Reliable recognition must allow to both specializing and 

generalizing, while maintaining a separation margin to 

distinguish between classes and identities. The margin must be 

robust enough to withstand input variability. Towards that end, 

the “only solution … is to incorporate learning capabilities within 

the vision system that allow it to both learn to see, as well as, 

learn by seeing.” Learning balances internal representations and 

external regularities (Nayar and Poggio, 1996). In biometrics, the 

constant challenge is to handle the continuous changes in human 

traits, due to internal (e.g., aging or expression) or external (e.g., 

illumination or capture resolution) factors. As for iris, the latter 

play the main role. As a matter of fact, iris is time invariant and 

extremely distinguishing. Moreover, it is visible yet well 

protected, and its image can be acquired without contact. The 

reverse of the medal is that iris surface is very limited (only about 

3.64 cm
2
), so that acquisition for a reliable processing requires a 

distance of less than one meter to guarantee a sufficient 

resolution. In other words, an accurate recognition is only 

possible by ensuring subject cooperation and quality of the 

captured image. Therefore, present research trend is towards 

trying to significantly relax the constraints. The goal is a 

matching system with a sufficient robustness to different kinds of 

distortion, such as blurring, off-axis, reflections and occlusions 

by eyelids or eyelashes, to allow processing of noisy iris images, 

which are often partially compromised. 

One of the factors hindering the adoption of machine learning 

approaches for biometrics is the huge number of classes 

(individuals) that have to be discriminated. As a matter of fact, in 

this case one seldom needs to distinguish among few classes, as 

in the case of age or gender. Each individual requires an ad-hoc 

training with positive and negative samples, but the former are 

typically not available in a sufficient number. Moreover a stable 

distribution of features across time is expected. Therefore, in 

massive real world applications classical machine learning 

approaches seem to have limited appeal. Nevertheless, the 

potential of such techniques attracts researchers since the first 

studies concerning artificial neural networks (ANN), i.e. the 

intriguing possibility to provide brain-like learning abilities to  

computers. In the case of biometrics, the ability for an automatic 

application to learn the features, rules, and strategies exploited by 

the human cognitive system to recognize human companions. As 

for iris, this implies doing something difficult for a human too, 

given the complex and high-resolution visual structure to 

process. 

Iris recognition is a relatively young field (the first significant 

results are from early ’90, see Daugman, 1993) but advances 

have been very fast and effective (see for example ICE and NICE 

contests). The approaches to exploit machine-learning techniques 

are even more recent. As a matter of fact, the majority of the 

works considered in this paper has been published in the last five 

years, showing a young but constantly increasing interest of 

scientific community. We will review here the most interesting of 

such methods in literature.  

Two main classes of methods can be identified as those 

relying on ANNs and those relying on Support Vector Machine 

(SVM) or more generally Kernel Machines. 

The ANNs are layers of neurons, each computing an 

activation function according to weights attached to the links 

among neurons. With one single output neuron, the class of 

binary classification problems is addressed, whilst in the case of 

multiple classes, more outputs are used till to be equal to the 

number of classes. The ANN architecture includes a family of 

functions (the activation functions), and the network training 

allows choosing one such decision function. In particular, this 

family is defined by the complexity of the neural network: 

number of hidden layers, number of neurons in these layers, and 

topology of the network. The decision function is determined by 

choosing appropriate weights for the neural network connections. 

Optimal weights usually minimize an error function for the 

particular network architecture.  

SVM classifiers are basically generated by a two-step 

procedure. First, the sample data vectors are projected  onto a 

very high-dimensional space. The dimension of this space is 

significantly larger than the original data space. Second, the 

algorithm finds a hyperplane in this new space with the largest 

margin (linearly) separating classes of data. Classification 

accuracy usually requires a sufficiently high dimensional target 

space. If it is not possible to find the separating hyperplane, a 

tradeoff must be accepted between the size of the separating 

margin and penalties for every vector that is within the margin. 

Explicit mapping to a new space can be avoided if it is possible 

to calculate the scalar product in this high dimensional space for 

every two vectors. This scalar product can be defined by 

introducing a kernel function (xx’) = K(x, x’), where x and x’ 

are a pair of vectors in the low-dimensional space for which the 

kernel function  K corresponds to a scalar product in a high 

dimensional space. Various kernels may be applied, and this 

characterizes the different kinds of SMs approaches.  

In addition, also techniques considering the periocular region 

are taken into account. This emerging research line aims at 

addressing the problems of low resolution, distance and blur that 

affect iris in uncontrolled conditions, using the periocular region 

instead, either as an alternative trait or as a complement. 

The rest of the paper proceeds as follows. Section 2 presents a 

description of ML methods applied to iris recognition, 

distinguishing mainstream ones from those using the fuzzy 

variation of neural networks and form those using different 

improvements to the basic techniques; periocular recognition by 
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ML is also presented. Section 3 deals with some discussion about 

the presented methods and Section 4 draws some conclusions. 

2. Main machine learning approaches to iris and periocular 
recognition 

In this section we describe the main contributions available so 

far to the field of iris/periocular recognition through machine 

learning techniques. Most of the works considered pertain to the 

last decade and two thirds of them have been presented in the last 

five years, showing an increasing interest of scientific 

community for this topic. It is worth remarking that the present 

paper is specifically focused on the machine learning methods 

applied to the recognition problem and, consequently, it does not 

cover in detail any feature extraction methods unless this step is a 

characterizing part of the ML approach. In the same way, as we 

wanted to provide a coherent and uniform view of the state of the 

art, almost the totality of the papers cited in this survey concern 

iris/periocular recognition instead of their detection. On the 

contrary, some missing works especially tackle these two 

problems, leaving less space to the investigation of original ML 

techniques. For these further papers the interested reader can 

refer to (Sharma et al., 2014). The same holds for papers 

presenting very similar techniques. 

Notwithstanding the relatively small corpus of existing works, 

a wide range of different machine learning methods have been 

proposed. These mainly rely on (yet are not limited to) Artificial 

Neural Networks (ANN) in general, and in particular, Multi 

Layer Perceptrons (MLP), Self Organizing Map (SOM) neural 

networks, Radial Basis Function Neural Network (RBFNN), 

Fuzzy Neural Networks, Probabilistic Neural Networks (PNN), 

Gabor Wavelet Neural Networks (GWNN), and Restricted 

Boltzmann Machines (RBM), and include Support Vector 

Machines (SVM). This variety of techniques, together with the 

uneven distribution of iris vs. periocular papers (at the best of our 

knowledge, only three of the latter exploit ML) suggested us the 

structure of the survey. We organized the contributions in four 

groups, covered in subsections 2.1 to 2.4, according to the kind 

of ML technique applied. In this case, the usual classification of 

machine learning methods in “supervised” and “unsupervised” 

(or possibly semi-supervised) is not well suited to provide a 

meaningful characterization of the state of the art. Three out of 

these four groups strictly concern iris recognition, while the 

fourth one deals with periocular recognition and also with the 

application of ML to iris and eye detection. The periocular region 

can be considered as a trade-off between two well-established 

biometrics, face and iris. It represents a valid alternative to 

constrained environments requiring active cooperation by users, 

allowing a more “relaxed” capture of subjects to be 

authenticated. The size of the periocular region, indeed, 

simplifies its acquisition with respect to the much smaller iris 

surface and its moving profile. Periocular recognition may be 

useful in applications where, due to occlusions, it is difficult to 

obtain a clear picture of an iris or a complete picture of a face. 

Periocular biometrics can be used together with iris recognition, 

by fusing the corresponding scores, or also alone. To the best of 

our knowledge, there are only a few works exploiting ML 

methods for periocular recognition so far, and they are briefly 

described in the following paragraphs.  

At the end of this section, Table 1 summarizes all the methods 

covered herein, providing a quick comparison of the main 

features and performance with regard to the specific datasets 

used. 

2.1. Mainstream methods 

The first group of considered methods, that is also the largest 

one, comprises works in which the feature matching/recognition 

stage is based on the most diffused machine learning 

architectures and procedures, such as SOM, Feedforward Back 

Propagation Neural Network (FBPNN), Multilayer Feedforward 

Neural Network (MFNN), MLP and kernel/SVM methods.  

In order to better reflect the research trends, we chose to list 

the relevant works in chronological order, but the main 

distinction between methods exploiting Neural Networks and 

those based on SVM will underlie the presentation. 

One of the first proposals concerning the use of machine 

learning techniques for iris recognition has been presented by 

Liam et al. in 2002 (Liam et al., 2002) and exploits a Self-

Organizing Neural Network for matching iris patterns. The 

authors describe a simple network architecture based on a single 

layer of Euclidean weight functions, where Manhattan distance is 

the metric adopted for computing the distance between a couple 

of neurons; a competitive transfer function without bias is 

exploited to upgrade the weight. The network is composed of a 

grid of 25 neurons; it is trained with a subset of a proprietary iris 

database containing 150 samples, some of which presenting a 

relevant distortion. The system is tested with 30 sets of five 

samples, achieving an overall accuracy of 83%.  

In (Moinuddin et al., 2004), two different types of neural 

networks are experimented and compared to each other to 

improve the recognition accuracy: the MFNN and the RBFNN. 

The former is implemented using a single hidden layer featuring 

30 neurons, an output layer with 10 neurons and backpropagation 

to update the weights. The proposed RBFNN network is simpler 

than the MFNN, having only one layer and 10 neurons and 

therefore requiring a much lower computational load. The 

experiments are conducted on a subset of the Daugman’s iris 

database (Daugman 1993), with Gaussian noise added with 

different signal-to-noise-ratios (SNRs) to 70% of the training set, 

and iris contours extracted as a 1D feature vector. Results show a 

similar recognition performance between MFNN and RBFNN, 

with a slight advantage in terms of accuracy for MFNN and a 

much lower computing time for RBFNN (less than a half of 

MFNN).  

In 2005, Gu et al. (Gu et al., 2005) first propose to exploit the 

classification performance of SVM for the iris recognition 

problem. A fractal-based procedure extracts iris features (see Gu 

et al., 2004). The main concern in this approach is the reduction 

of the computational load typical of kernel-based methods by 

combining different optimization techniques. To this aim they 

use active learning to remove most non-support vectors rapidly, 

thus greatly reducing the computing time required by sequential 

optimization. In addition, a polynomial kernel function is 

preferred over RBF and sigmoid function, and a strategy for 

negative samples reuse is also implemented (negative samples 

are reused when they support vectors). Finally, other 

optimizations in feature representation and in storing of training 

results allow further improvement of the SVM’s efficiency for 

this particular task. Experiments on the CASIA-IrisV1 database 

achieve a recognition rate of 98.4% for the standard SVM 

implementation, and slightly less for the optimized version; 

however, the latter is more than five times faster than the non-

optimized one. 

Similarly, Roy and Bhattacharya (Roy and Bhattacharya, 

2005) test SVM performance with various kernel types on the 

CASIA-IrisV1 database.  Iris feature vectors are extracted via 

Gabor wavelets. According to the reported findings, RBF kernel 

provides the best recognition accuracy with a recognition rate of 
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97.34%. A False Acceptance Rate (FAR) of 2.06% and a False 

Rejection Rate (FRR) of 0.6% confirm the suitability of the 

proposed architecture for both authentication and recognition 

applications. 

In 2008 also Ali and Salami (Ali and Salami, 2008) 

experiment on a subset of CASIA-IrisV1 database (42 grayscale 

eye images) with a SVM architecture and different kernel types. 

Even in this case the proposed procedure exploits Gabor wavelets 

for extracting the deterministic features in the segmented iris. 

SVM–based authentication gives very good results for FAR in 

both closed set and open set conditions (in the close set, an 

authorized person uses other authorized person identity. In the 

open an impostor uses authorized person’s identity). This implies 

that the proposed system is well protected from attacking by 

impostors. In contrast, the FRR values are very high with an 

average value of about 19.80%. Hence, the system seems to have 

poor usability. Experimental results show that the best FRR 

reachs about 33%, with an average value of 19.80%. 

The aim of devising an adaptive learning strategy for a NN-

based iris classification method, is central in the work of Abiyev 

and Altunkaya (Abiyev and Altunkaya, 2008). The NN 

architecture consists of two hidden layers, respectively including 

120 and 81 neurons. It is enhanced by a gradient-based learning 

algorithm, featuring an adaptive learning rate in order to increase 

learning speed and also for guaranteeing convergence. The 

experiments conducted on the CASIA-IrisV1 database report up 

to 99.25% of recognition accuracy.  

Kocer and Novruz (Kocer and Novruz, 2008) compare two 

particular implementations of a Modular Neural Network and of 

conventional MLP to investigate whether one of the 

aforementioned architectures might result more suited than the 

other to the task of iris recognition. More in detail, a feed-

forward multilayer perceptron is compared to a MNN featuring 

several subcomponents (miniaturized MLPs) that can 

dynamically vary in structure and number to perform a specific 

subtask. Feature vectors are extracted through the Average 

Absolute Deviation (AAD) algorithm. The training session is 

performed on subsets of CASIA-IrisV1 and UBIRIS.V1 database 

(490 iris images captured from 70 people, 7 images per person 

from CASIA database, and 300 iris images captured from 60 

people, 5 images per person from UBIRIS). The results achieved 

show an advantage of more than 3% in recognition accuracy for 

the MNN that reaches a 97.14% rate on the CASIA images, 

while at the same time it results much faster than standard MLP. 

Also Shin et al. (Shin et al., 2009) exploit a MLP architecture, 

but with a different purpose. They propose to use multiple MLPs 

to implement a super-resolution approach aimed at enhancing the 

spatial resolution of iris images, which are typically affected by 

camera-subject distance, camera lens and sensor resolution, and 

often result not suitable for accurate recognition. The proposed 

restoring pipeline takes as input the low-resolution iris image, 

estimates pixel values of the super-res image by means of three 

MLPs, without the reduction of middle or high frequency 
components, and finally the procedure fills up the remaining 
dark pixels by using bilinear interpolation. In order to test the 

saliency of the features extracted through Gabor wavelet from the 

resulting images, the authors train the MLPs iteratively on a 

randomly selected subset of the CASIA-IrisV3 database, by 
means of a back propagation algorithm. Experiments confirm 
the improvement in recognition accuracy provided by the 
method when the input images are of low resolution. 

In 2009, Sarhan (Sarhan, 2009) proposes another MLP-based 

approach characterized by a three-layer network. The architecture 

exploits back-propagation for the learning algorithm and log-

sigmoid transfer function for the output layer; this layer is 

composed by 30 neurons, one for each of the individuals to be 

classified according to feature vectors based on a Discrete Cosine 

Transform (DCT). The method achieves a 96% of recognition 

accuracy  on the CASIA-IrisV2 database. 

Gaxiola et al. (Gaxiola et al., 2010) present a modular neural 

network for iris recognition. It is made up of  three simple neural 

networks and each module input handles 33 individuals (264 

images for  training - 198 images for testing). To integrate all  

results of the three modules, a Gating Network is used. Iris 

patterns are extracted by the software by Makek and Kovesi 

(Masek and Kovesi, 2003). The authors perform experiments 

with 3 types of learning algorithms:  gradient descent with 

adaptive learning (GDA), gradient descent with adaptive learning 

and momentum (GDX) and scaled conjugate gradient (SCG). 

The best learning algorithms are the scaled conjugate gradient 

(SCG) and gradient descent with adaptive learning (GDA) with 

images of size of 21x21. The best reported identification rate 

adding the Gating Network is 96.80% when the approach is 

applied to CASIA-IrisV1 database. In 2011 the same research 

group (Gaxiola et al., 2011) proposes a similar approach but uses 

type-2 fuzzy integration at the level of submodules, and Gating 

Network at the level of the modules, achieving a recognition rate 

of 97.98% of recognition rate on the same CASIA-IrisV1 set. 

In 2010, Lu et al. Wang (Lu et al., 2010) propose a new 

approach based on Kohonen network (SOM) that recalls the one 

from (Liam et al., 2002) mentioned above, but exploits 

Independent Component Analysis (ICA) for feature extraction. 

The method is trained on a subset of 180 iris specimens out of a 

proprietary iris database of 400 images, and reaches up to 

98.81% of recognition accuracy.  

Along a similar line of research, Wagdarikar and Subbaraman 

(Wagdarikar and Subbaraman, 2010) compare the recognition 

accuracy of a FBPNN whose input vectors are obtained by 

extracting iris pattern features through either ICA or Single 

Value Decomposition (SVD). Their findings suggest that, at the 

cost of a greater training time, the simple NN used performs 

better with SVD than ICA for feature vectors up to 10 

dimensions (recognition rate of 96.29%), while performance 

drops rapidly for 20+ dimensions. The experiments exploit the 

CASIA-IrisV1 database. 

Dias et al. (Dias et al., 2010) compare the efficacy and 

efficiency of several back propagation algorithms (Fletcher-

Reeves conjugate gradient, Polak-Ribiére conjugate gradient, 

Powell-Beale conjugate gradient, Scaled conjugate gradient and 

One-step secant method) for the same ANN architecture on the 

same subset of CASIA-IrisV1 database. The experiments 

conducted on a network trained for 99 people on 990 training 

images, highlight the good accuracy achievable by means of 

conjugate gradient algorithm whose Powell-Beale’s version 

reaches 94.24% of recognition accuracy. 

An interesting comparison of performance achieved by 

varying  the number of hidden layers of an ANN, the number of 

neurons in each hidden layer, the input format (analog vs. 

binary), the noise level in the input image and the 

training/testing-data ratio is available in the work by Sibai et al. 

(Sibai et al., 2011). A NN architecture that can be configured in 

different ways and three different data partitioning techniques 

(horizontal strip, vertical strip and block) are exploited to 

investigate how these parameters possibly affect the recognition 

accuracy. Experimental results on the CHEK image database 

(CHEK ref.) show that the best accuracy of 93.33% is obtained 
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with 10-block partitioning, featuring 10 neurons in the input layer 

and 50 neurons in the hidden layer and 1 hidden layer only, while 

by reducing the number of neurons in the input layer, the 

recognition rate drops to 86.66%. Performance is negatively 

affected also by increasing the number of hidden layers, by using 

binary (instead that analog) input and by greater noise levels.  

According to the work of Baqar et al. (Baqar et al.. 2011) it is 

possible to improve the recognition accuracy of a MFNN, a type 

of neural network already explored by other authors, by 

providing as input a more salient feature vector obtained by 

concatenating the contour points of the Pupil-Iris boundary and 

the Sclera-Iris boundary. The back-propagation MFNN used for 

the experiments features the common three-layers architecture 

with a 720 neurons input layer, a 90 neurons hidden layer and a 

10 neurons output layer. The experiments use the MMU Iris 

Database. Noisy iris samples, generated by adding Gaussian 

noise at various intensity levels, are used for the training stage. 

According to the results provided the proposed dual-boundary 

based approach outperforms the conventional single-boundary 

method (on the same NN architecture) with recognition accuracy 

up to 99.3% (dual) vs. 93.4% (single). 

Khedkar and Ladhake (Khedkar and Ladhake, 2013) extract 

features from iris images in the CASIA-IrisV1 database via the 

2D Walsh Hadamard Transform (WHT). They then compare 

MLP, RBF and SVM by varying a set of parameters including 

momentum, step size in hidden and output layers, learning rules 

and number of neurons in the hidden layer, to the purpose of 

selecting the NN configuration best suited to classification of 

irises. Different variants of BP like momentum, conjugate-

gradient, quick propagation, delta-bar-delta, Levenberg-

Marquardt and step are also experimented. The experiments 

show an advantage of the single-hidden-layer MLP with 

momentum BP over other architectures considered (accuracy of 

95%) and this advantage is confirmed also on iris patterns 

modified by injecting Gaussian and uniform noise at the cost of 

small drop of recognition accuracy (90.5%). 

AL-Allaf et al. (AL-Allaf et al., 2013) propose an ANN based 

on the PatternNet model and characterized by a multilayer 

architecture with one input layer, five 15-neurons hidden layers 

and one output layer. They compare this configuration trained by 

ten different algorithms (e.g., Levenberg-Marquardt, Bayesian 

regularization, Gradient descent, Gradient descent with 

momentum and adaptive learning rate, etc.) to other four types of 

NN including FBPNN, Cascade ANN, FitNet and LVQNet. 

Previously segmented iris images are partitioned into ten sub 

blocks 10x10 pixels in size. The experiments are carried out on a 

subset of the CASIA-IrisV1 database. The results in terms of 

Mean Square Error (MSE), Peak Signal/Noise Ratio (PSNR) and 

Recognition Rate (RR) show that the best accuracy (RR of 

98.9%) is achieved with the proposed PatterNet model of ANN 

trained by means of Levenberg-Marquardt algorithm. 

Interestingly, the addition of a second hidden layer reveals to be 

counterproductive for the system’s performance.  

In 2014, Rai and Yadav (Rai and Yadav, 2014) propose to 

combine SVM with Hamming distance to improve both accuracy 

and robustness of iris recognition. In their approach the authors 

hypothesize an advantage in using the SVM as the main classifier 

and the Hamming distance as a secondary classifier in case 

SVM-based classification of iris features fails. They also propose 

to use two different feature extraction techniques (Haar wavelet 

decomposition and 1D Log Gabor wavelet) for the two classifiers 

instead than using the same features for both of them. The reason 

for this is in the known accuracy of SVM in correctly classifying 

impostors (very low FAR) and, at the same time, the tendency to 

incorrectly classify genuine subjects (FRR is not that low). The 

idea is to use the SVM on Haar wavelet features first, then, for 

the probably small percentage of patterns not correctly classified 

(a fraction usually below 10% of the total, containing patterns 

either falsely rejected or belonging to imposters) a second feature 

extraction is performed with 1D Gabor wavelets, and Hamming 

distance is used to match again this subset of feature vectors. 

This approach cope with the typical “unsatisfying” performance 

of SVM with regard to non-false acceptance rate. Experiments on 

both the CASIA-IrisV1 (RR=99.91%) and the CHEK database 

(RR=99.88%) confirm the efficacy of this technique and a clear 

improvement over using the same features extraction techniques 

for both the matching stages. 

Srivastava et al. (Srivastava et al., 2014) propose in 2014  a 

synergic approach to iris recognition which entails  evolutionary, 

fuzzy and neural techniques. In practice, they combine 

evolutionary fuzzy clustering and functional modular neural 

networks (FMNN).  The former exploits Minkowski distance 

(EFC-MD) to carry out a pre-classification task which allocates 

training patterns into an optimal number of clusters. In 

comparison with Euclidean distance, Minkowski distance 

matrices allow flexibility in handling any cluster shape. Clusters  

are used to devise the parameter for the functional modular 

network. The functional modular neural network is trained 

according to the fuzzy distribution of patterns in a cluster 

identified by EFC-MD. It has a single hidden layer. The 

experimental results on CASIA prove that the novel approach is 

more flexible than the Local Phase Quantization (LPQ) 

techniques and  provides a recognition rate of 98.12%. 

More recently, Saminathan et al. (Saminathan et al., 2015) 

present a new multi-class SVM based approach to both iris 

authentication and recognition. Three types of kernel (linear, 

polynomial and quadratic) are combined with three methods 

(sequential minimal optimization, quadratic polynomial and least 

square) and compared to other three classification methods: 

Hamming distance, Local Binary Pattern and FFNN. Feature 

extraction and representation produces row vectors of 2400 

intensity values. The results of the experiments based on the 

CASIA-IrisV3-Interval database, highlight that the best 

performance is achieved by using the least square method and 
quadratic kernel SVM, accounting for a recognition rate of 

98.5% with zero percentage of False Acceptance Rate (FAR) in 

the best case. 

The work by Fasca et al. (Fasca et, al., 2012) is the first 

example of a periocular recognition system that exploits Local 
Binary Pattern (LBP) and Histogram of Oriented Gradients 
(HOG) for feature extraction and a ML technique for an 

effective classification and recognition of authorized individuals. 

In their approach, indeed, the authors use a classical FFBPNN 

with a single hidden layer for training and classification. Gradient 

descent method and sigmoid function are used for training while 

the hidden layer contains 70 neurons. A proprietary database 

consisting in left/right periocular images from twenty subjects is 

built for the purpose of testing the efficacy of the proposed 

method. The results of the experiments report a recognition rate 

of 91% for L/R periocular regions and of 88-90% for single 

periocular region, with a clear advantage when using the BPNN. 

Since face recognition is generally performed under visible 

wavelengths and iris recognition performs best in Near Infra-Red 

(NIR) wavelengths, a cross-spectral matching problem might 

arise when combining two differently captured biometrics in the 

context of periocular recognition. To address this issue, Sharma 

et al. (Sharma et al., 2014) are the first to propose an algorithm 

based on NN for learning the class of image variations caused by 
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different spectral ranges. According to the architecture described 

in their paper, three learning stages with corresponding NN are 

introduced for the first spectrum, the second spectrum and for 

cross-spectral matching respectively. The first two networks (i.e. 

for spectrum 1 and spectrum 2) are trained using back-
propagation with regularization, where the fitness function is 
the verification accuracy at 1% of FAR. The third cross-
spectral-variability network combines the other two 
previously trained NN which receive as input a cross-spectral 
feature vector while their outputs are connected to a sigmoid 
threshold unit through specific weights. Once trained, this 
combined network is used for cross-spectral periocular 
classification. To the aim of addressing the lack of cross-
spectral periocular databases, the authors have built the IIITD 
Multispectral Periocular (IMP) database, featuring near-
infrared, visible and night-vision periocular samples. On this 
database, the proposed approach produces superior accuracy 
compared to other four methods like LBP, HOG, PHOG and 
FPLBP and with a recognition rate ranging from 76.97% 
(visible spectrum) to 92.5% (NIR) for same-spectrum 
recognition and from 48.21% (night vision – NIR) to 71.93% 
(visible - night vision) for cross-spectral recognition. In most 
experiments, combined L+R periocular provides a better 
recognition accuracy than single L/R periocular. 

2.2. Methods based on Fuzzy neural networks 

Neural networks and fuzzy systems have some things in 

common. They can be used for solving problems for which no 

mathematical model of the given problem exists. They also 

involve certain disadvantages and advantages that can possibly 

disappear by combining both concepts. Neuro-fuzzy systems, 

also known as Fuzzy Neural Networks (FNNs) are hybrid fuzzy 

systems characterized by a learning algorithm derived by neural 

network theory to determine its parameters (fuzzy sets and fuzzy 

rules) by processing data samples (Caianiello and Petrosino, 

1994; Baraldi et al., 1997). The learning procedure operates on 

local information, and causes only local modifications in the 

underlying fuzzy system. The following papers apply the idea of 

combining fuzzy reasoning to neural networks in the effort of 

improving robustness and/or accuracy of iris recognition systems, 

even in case of non-optimal iris images.  

In 2011, Chowhan et al. (Chowan et al., 2011) start from the 

Fuzzy HyperSphere Neural Network (FHSNN) originally 

developed by Kulkarni et al. (Kulkarni et al., 2001) to propose an 

extension of this concept, the Modified Fuzzy HyperSphere 

Neural Network (MFHSNN). The latter features the ability to 
rapidly learn patterns by creating /expanding hypersheres. The 
MFHSNN architecture is based on four layers. Iris feature 
vectors extracted via Singular Value Decomposition (SVD). 
The input layer consists of n processing node where n is the 
dimension of the input pattern. The subsequent layer includes 
q nodes (resulting from the training stage) each representing 
hypersphere fuzzy sets characterized by hypersphere 
membership function. The third delivers fuzzy decision so 
that the output of its kth node represents the degree to which 
the input pattern belongs to the class nk, while each 
connection between the second and the third layer represents 
binary values. Finally the fourth layer delivers a de-fuzzyfied 
output. Experiments conducted on the CASIA-IrisV1 database 
confirm the feasibility of MFHSNN for iris recognition 
achieving a recognition rate of 94%. 

Chowan and Shinde (Chowan and Shinde, 2011) propose a 
different neuro-fuzzy approach based on the work by Simpson 
(Simpson, 1992) on Fuzzy Min-Max Neural Networks 
(FMNN). The approach is characterized by hyperbox (instead 

of hypershpere) fuzzy sets to build the neural networks. 
Even in this case the procedure extracts iris features by SVD. 
The three-steps algorithm performing hyperbox expansion, 
overlap testing and (in case the overlap exists) hyperbox 
contraction, applied to the CASIA-IrisV1 database delivers a 
recognition rate of up to 95.68% with a training time of about 
six seconds and a recall time of slightly more than two 
minutes. 

In Raghavi et al. (Raghavi et al., 2011) the proposed FNN 
is based on a two-layers feed-forward back-propagation 
neural network with a number of input nodes that is double of 
the number of (continuous-valued) input parameters. The 
number of  output nodes is the same as the number of classes 
in the data. This configuration is used to match feature vectors 
previously extracted from a small (20 samples) proprietary 
iris dataset through Harr wavelet and embedded zero tree 
wavelet coding. The results of experiments reach 99.25% of 
recognition rate after training. 

2.3. Others (PSO, GA, PNN, etc.) 

In the following we report about approaches that try to explore 

new ways of applying machine learning to iris recognition. They 

follow other research lines like genetic algorithms, particle 

swarm optimization techniques, probabilistic neural networks, 

etc. Some works also focus on aspects not sufficiently covered in 

literature, as the impact of sensors on the recognition. In 

particular, GAs  finds application in supporting efficient and 

effective search, in our case for the synthesis of neural network 

architecture, and better selection of feature subsets based on 

different feature selection methods to obtain the best classifier. 

Also PSO mainly addresses feature selection. As anticipated, we 

will not cover the latter aspect if not strictly related with the rest 

of the approach. Related papers can be found in the survey by 

Sharma et al. (Sharma et al., 2014). 

In 2005, Chu and Chen (Chu and Chen, 2005) are the first to 

exploit a PNN trained through a Particle Swarm Optimization 

algorithm (PSO) to classify 1D iris features extracted by means  

of LPC-derived cepstrum (LPCC) and Linear Discriminant 

Analysis (LDA). Particle Swarm Optimization (PSO) is a kind of 

algorithm originally conceived to model complex natural 

behavior like that of a flock of birds or a school of fish. In this 

case the authors aim at optimizing the PNN by finding the best 

smooth parameters during the training stage. According to the 

experimental results on the CASIA-IrisV1 database, the PSO 

algorithm is beneficial to the average recognition rate that 

reaches 99.14% compared to 98.38 without PSO. 

In the same year Chen and Chu (Chen and Chu, 2005)  

propose a network to classify the pattern of iris features by a 

technique called wavelet probabilistic neural (WPNN). WPNN 

combines Wavelet Neural Network and Probabilistic Neural 

Network. Sobel Transform and vertical projection extract the 

features and adjust the weights of WPNN. The method exploits 

PSO again to train the WPNN. This system is applied to CASIA-

IrisV1 dataset. Experimental results show that recognition time 

per image is less than 1ms and Equal error rate (EER) 3.32%. 

Working on improving the PSO algorithm, Zhang et al. 

(Zhang et al., 2007) describe a hybrid PSO-BP approach. It is 

inspired by Adaptive Particle Swarm Optimization Algorithm 

(APSOA) that is combined with the BP algorithm to perform 

global search in the starting stage; then it exploits the BP 

algorithm to performing local search in the surrounding of global 

optimum. This approach is used to train the weights of a FFNN 

to the aim of achieving increased convergence speed and 
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generalization capability. To prove the advantages brought by the 

proposed solution, the authors compare PSO-BP to APSO and 

BP alone using the iris classification problem as a challenging 

benchmark. Their findings show that PSO-BP, though not 

superior to PSO in the peak recognition rate (99.33%), has better 

mean recognition rate than both PSO and BP; this is obtained 

thanks to the local gradient descending method used to search 

around global optimum, which improves the searching 

efficiency. 

An attempt to combine genetic algorithms and SVM in the 

context of iris recognition is due to Roy and Bhattacharya (Roy 

and Bhattacharya, 2007). The authors exploit Multi Objective 

Genetic Algorithm (MOGA) to select optimal features for tuning 

the SVM and therefore maximizing recognition accuracy. More 

precisely, the goal of feature subset selection is to use fewer 

features to improve performance. The fitness evaluation is based 

on the accuracy from the validation data and on the number of 

features considered, while the performance of SVM classifier is 

used to guide the genetic algorithm. Trying to address the known 

not-so-good FRR of standard SVM architecture, an asymmetrical 

architecture is applied to satisfy different types and levels of 

security applications and to handle unbalanced data by reducing 

the FAR; the latter goal is achieved through an asymmetrical 

parameter used to adjust the decision hyperplane. Two different 

iris datasets are used for the experiments: the ICE (Iris Challenge 

Evaluation) and the WVU (West Virginia University). Iris 

features are extracted by means of 2D Gabor wavelets. RBF 

kernel is adopted for iris pattern classification according to a 

comparison with other kernel types. The results achieved 

highlight a measurable (though slight) advantage in the MOGA 

enhanced system with recognition rate of 97.70% on ICE dataset 

and of 95.6% on WVU dataset. The asymmetrical SVM 

architecture affects positively the Equal Error Rate (EER) that 

drops from 0.72% to 0.43% on ICE and from 1.6% to 0.9% on 

WVU. 

Zhou et al. (Zhou et al., 2008) present a Gabor Wavelet 

Neural Network (GWNN) that can be represented as a perceptron 

characterized by a Gabor-node as a preprocess unit for feature 

extraction exploiting the improved steepest descent algorithm. 

The extraction algorithm layer of GWNN is used for determining 

the optimal parameters of wavelet basal function. To this aim, 

Gabor parameters are adaptively adjusted through Gabor wavelet 

atomic transform function. When optimal values are found, 

Gabor filtering and wavelet methods are used to extract iris 

features whose dimensionality is reduced by means of 2D 

Principal Component Analysis (2DPCA). Features matching and 

classification is therefore performed through another layer of the 

GWNN architecture. The experiments conducted on a proprietary 

iris dataset including fifteen subjects and ten iris images for each 

eye report a maximum recognition rate of 99.3% that compares 

favorably to more classical architecture like FBPNN and SOM 

which score 98.2% and 98.25% respectively. 

The idea of exploiting the concept of Probabilistic Neural 

Network (PNN) is proposed by Sundaram and Dhara (Sundaram 

and Dhara, 2011). A PNN is an artificial neural network 

specialized for nonlinear computing which approaches the Bayes 

optimal decision boundaries by estimating the probability density 

function of the training dataset. This particular architecture 

features an input layer, a pattern layer, a summation layer and an 

output layer and it results much faster than FFNN as it requires 

only one training step. The procedure extracts iris features 

through Gray Level Co-occurrence Matrix (GLCM) based 

Haralick features (Haralick et al., 1973). The approach is tested 

on the UBIRIS.V1 database, and achieves 97% of recognition 

accuracy with FAR=2.74% and FRR=3.15% at a threshold 

Th=0.6. 

An example of combining Modular Neural Network genetic 

algorithms (GA) and fuzzy integration  is provided by Melin et 

al. (Melin et al., 2012). The authors propose a MNN composed 

by three perceptrons (modules) each consisting in a MFNN using 

a matrix to represent the neural network and suited to not linearly 

separable problems. Each module is specifically shaped for one 

third of the subjects belonging to a subset of 77 people from the 

CASIA-IrisV3 database, as in (Gaxiola et al., 2010), resulting in 

a not uniform architecture. The feature vectors are extracted by 

compressing the iris images via wavelet transform. The GA is 

introduced to optimize the basic architecture, by finding the 

appropriate type of training and the optimal number of neurons 

and hidden layers. Various information integration methods are 

experimented, including gating network, type-1 fuzzy integration 

and even fuzzy integration through GA. Experimental results 

show that the best recognition accuracy of 99,76% is achieved 

when both the MNN structure and fuzzy integration are 

optimized by means of GA.  

The use of genetic algorithms for optimizing multilayer NN is 

also explored in (Raja and Rajapaln, 2013). In this work GA is 

executed ten times to find the average and standard deviation 

values for neurons number, methods and number of layers. The 

results achieved show a clear improvement of recognition 

accuracy and learning time for the GA optimized NN 

(RR=98.48%, 20 s) compared to the not optimized NN 

(RR=93.3%, 10.8 s). 

The efficacy of iris biometrics is known to be affected 

whenever different sensors are used for subject enrolment and for 

subject recognition in a given application scenario. This is very 

likely, as iris biometrics is becoming more and more accepted 

and diffused for a wide range of applications that may require 

enrollment and testing to be performed under different 

conditions. To address the problem of cross-sensor iris 

recognition, Pillai et al. (Pillai et al., 2014) present a novel 

machine learning-based approach aimed at reducing the 

recognition performance degradation by adapting iris samples 

from one sensor to another. A specifically designed optimization 

framework is used for learning the transformations of iris 

biometrics having the desired properties (which are represented 

by kernel functions) and is therefore exploited for sensor 

adaptation by enforcing the distances between iris samples 

belonging to the same class to be small (while interclass distance 

stays large) regardless of the sensor used for their acquisition. 

Matching is therefore performed using the transformed iris 

samples. The authors also propose an efficient solution to this 

convex optimization problem by means of an objective function 

using Bregman projections, thus avoiding to perform the 

optimization every time a test sample is acquired. Experiments 

have been conducted on the Notre Dame (ND) dataset also 

adopted for the Cross-sensor Iris Competition. The experimental 

protocol randomly selects three iris samples of both eyes from 

thirty subjects as the training data for the learning framework, 

while the remaining subjects are considered for cross-sensor 

recognition. The recognition rate for the adapted samples is 

always higher (87.82%) than the result achieved on non-adapted 

samples (84.34%) and it reaches a peak value of 95.73% on a 

subset of the ND dataset that is free from segmentation errors. A 

further advantage of the proposed methodology is that it has a 

low computational impact on the iris recognition pipeline and it 

can be easily integrated into existing architectures. 

Deep learning is the last frontier of ML. At the best of our 

knowledge, at present the only work addressing iris recognition 
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through deep learning (DL) is that by Liu et al. (Liu et al., to 

appear in this same Special Issue). In particular, this work tackles 

the even harder problem of cross-sensor iris recognition. As a 

matter of fact, large-scale identity management system often 

require matching heterogeneous iris images captured at different 

resolutions or by different iris devices. However, it is very 

difficult to manually design a robust encoding filter to address 

the intra-class variations of heterogeneous iris images. This paper 

proposes DeepIris, a DL-based method devised to this aim. It 

exploits convolutional neural networks to learn the relational 

features which measure the similarity between pairs of iris 

images. The system is able to directly learn a nonlinear mapping 

function between pairs of iris images and the identity 

supervision, instead of carrying out two separate steps of iris 

feature extraction and feature matching. In practice, DeepIris 

learns a pairwise filter bank to establish the relationship between 

heterogeneous iris images. Pairs of filters are learned for two 

heterogenous sources, respectively. While traditional methods 

depend on handcrafted features, DeepIris can automatically learn 

a pairwise filter bank (PFB). The model is composed by nine 

layers of different kinds: one Pairwise Filter Layer (PFL), one 

convolutional layer, two pooling layers, two normalization 

layers, two local layers and one full connection layer. The PFL 

takes as input a pair of heterogeneous images. After being 

filtered by the learned pairwise filters, the two feature maps are 

summarized into the similarity map. The convolutional layer 

includes 64 pairs of filters of the size of 5×5. The normalization 

layers carry out a cross-map normalization in each unit and 

experimental results show that two normalization layers in the 

network can increase performance. The aim of local layers seem 

is to capture more local information. Convolutional layers, local 

layers and the full connection layers all rely on the same 

Rectified Linear Unit (Krizhevsky et al., 2012) as activation 

function. Two datasets are used for experiments. Q-FIRE dataset 

(Johnson et al., 2010) includes iris images captured at different 

distances (5, 7, and 11 feet) by the same sensor, producing 

different resolutions of iris rings. The first 160 subjects are 

selected to construct the cross-resolution dataset. The second 

dataset is CASIA cross sensor dataset. The cross-sensor dataset is 

collected by means of a close-up sensor (IrisGuard H100 - IR) 

and a long-range iris recognition system (LRI) able to capture iris 

images at a distance of 3 to 5 meters. Both subsets contain 350 

subjects, each with 10 images per eye. This dataset has not been 

published yet. The obtained results for cross resolution iris 

verification show an EER of 0.15% with a genuine accept rate 

(GAR) as high as 95% when the false accept rate (FAR) is about 

10
−4

. Cross sensor verification achieves 0.31% EER. 

Convolutional Restricted Boltzmann Machine (CRBM), a 
variant of RBM designed to deal with large resolution image 

data, represents an example of unsupervised ML methods 
that has not been explored in the context of iris/periocular 
biometrics before the work by Nie et al. (Nie et al., 2014). 
The authors propose an approach for completely automated 
periocular recognition using a unsupervised feature learning; a 
few trained genuine pairs are used as constraint and the 
Mahalanobis distance is learned. While the unsupervised 
CRBM is used during the training process, the supervised 
metric learning is used for the verification. Finally, a binary 
SVM is trained to classify the genuine pairs. During the 
evaluation of unseen test images, the CRBM features are 
generated by means of the pre-trained CRBM model. For the 
combination with the handcrafted features, two SVM scores 
are employed. The final scores are generated by fusing two 
scores via non-linear transformation. Experimental results on 
the UBIPr database suggest that the supervised Manhalanobis 
distance outperforms in comparison with traditional metric 
space. According to the Receiver Operating Characteristics 
(ROC) curves provided (recognition rates are not reported in 
this paper) the best Equal Error Rate (EER) achieved is 6.4%., 
The experimental results also suggest that the nonlinear score 
level combination can better separate the genuine pairs than 
the traditional weighted sum and linear SVM fusion 
approaches. 

3. Discussion 

The choice between the two main classes of approaches, ANN 

vs. SVM, depends on their achievements in solving specific 

problems. For instance, in the work by Byvatov et al. (Byvatov et 

al., 2003) SVM and ANN systems are applied to an example of 

binary decision problems, namely a drug/nondrug classification 

problem in early-phase virtual compound filtering and screening. 

The results of that work indicate that solutions entailing SVM 

training appear to be more robust and to produce a smaller 

standard error than those relying on ANN training.  

In the mentioned work, the SVM classifiers yield slightly 

higher prediction accuracy than ANN, irrespective of the features 

extracted to encode object characteristics, the size of the training 

data sets, and the algorithms employed to train the two network 

architectures considered. However, a previous comparison of 

SVM to several machine learning methods (Burbidge et al., 

2001) had shown  that an SVM classifier outperformed other 

standard methods,  but a specially designed and structurally 

optimized neural  network was again superior to the SVM model 

in a  benchmark test. 
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    Tab.1. Comparison of main approaches to Iris and Periocular recognition through Machine Learning techniques. 

 

# Authors, Year Dataset Peri 
ocular 

Features Rec.  
% 

ML Approach 

1 Abiyev and Altunkaya, 

2008 
CASIA-IrisV1 N Intensity image 99.25 

Neural network featuring gradient based learning 

algorithm with adaptive learning rate 

2 AL-Allaf et  al, 2013 CASIA-IrisV1 N 
Partitioned  

intensity image 
98.9 

Feedforward Back Propagation Neural Network 

(FBPNN) 

3 Ali and Salami, 2008 CASIA-IrisV1 N Gabor wavelet 100 ? Support Vector Machine (SVM) 

4 Baqar et  al. 2011 
MMU  

Iris Database 
N 

Dual boundary 

contour vector 
99 

Dual boundary detection via robust variable learning 

rate Multilayer Feedforward Neural Network(MFNN) 

5 Chen and Chu, 2005 CASIA N 
Sobel and vertical 

projections 

EER

=3,32

% 

Wavelet Neural Network and Probabilistic Neural 

Network 

6 Chowan et  al, 2011 CASIA-IrisV1 N 
Singular Value 

Decomposition (SVD) 
94 

 Modified Fuzzy HyperSphere Neural Network with 

different distance measures (MFHSNN) 

7 Chowan and Shinde, 

2011 
CASIA-IrisV1 N SVD 95.68 Fuzzy Min-Max Neural Network 

8 Chu and Chen, 2005 CASIA-IrisV1 N 
LPCC / Linear Discriminant 

Analysis (LDA) 
99.14 

Particle Swarm Optimization (PSO) +  

Probabilistic Neural Network (PNN) 

9 Dias et  al, 2010 CASIA-IrisV1 N Intensity image 94.24 
Back Propagation Neural Network (BPNN), various 

back propagation algorithms  

10 Fasca et  al, 2012 Proprietary Y 
 LBP and Histogram of 

Oriented Gradients (HOGs) 
91 

Local Binary Pattern (LBP), Histogram of Oriented 

Gradients (HOGs), Backpropagation Neural Network 

(BPNN) 

11 Gaxiola et al., 2010 CASIA-IrisV1 N Masek and Kovasi 96.80 

Modular Neural Network (a module for each subset of 

subjects to recognize) with different learning 

algorithms and integration carried out by Gating 

Network 

12 Gaxiola et al., 2011 CASIA-IrisV1 N Masek and Kovasi 97.98 

Modular Neural Network with type-2 fuzzy  integration 

at submodule level and Gating Network integration at 

module level 

13 Gu et  al, 2005 CASIA-IrisV1 N Variation fractal dimensions 98.4 Polynomial kernel Support Vector Machine (SVM) 

14 Khedkar and Ladhake, 

2013 
CASIA-IrisV1 N 

2D Walsh-Hadamard 

Transform (WHT) 
95 

Radial Basis Function (RBF), Multi Layer Perceptron 

(MLP), Support Vector Machine (SVM) 

15 Kocer and Novruz, 2008 
CASIA-IrisV1 

UBIRIS.V1 
N 

Average Absolute 

Deviation (AAD) 

97.14 

100 
Modular Neural Network (MNN) 

16 Liam et al, 2002 Proprietary N Intensity image 83 Self-Organizing Map (SOM) Neural Network 

17 Liu et al, to appear 
Q-FIRE  

CASIA  
N -  Deep Learning with Convolutional Neural Network 

18 Lu and Wang, 2010 Proprietary N 
Independent Component 

Analysis (ICA) 
98.81 SOM Neural Network 

19 Melin et  al, 2012 CASIA-IrisV3 N Wavelet transform 99.76 ANN + Fuzzy Integrator + Genetic Algorithm 

20 Moinuddin et  al, 2004 
Daugman’s iris 

dataset 
N 1D iris contour 97 

Multilayer Feedforward Neural Network (MFNN) and 

Radial Basis Function Neural Network (RBFNN) 

21 Nie et  al, 2014 UBIPr Y  50.1 
Unsupervised Convolutional  Restricted Boltzmann 

Machine (RBM) Feature Learning 

22 X     Pillai et  al, 2013 
Notre Dame 

(ND) 
N 

Daugman’s 

iris code 
87.82 Kernel-learning framework for cross-sensor adaptation 

23 Raghavi et  al, 2011 Proprietary N Haar  wavelet 99.25 Fuzzy Neural Network (FNN) algorithm 

24 Rai and Yadav, 2014 
CASIA-IrisV1 

CHECK 
N 

Haar wavelet 

decomposition / 1D Log 

Gabor wavelet 

99.91 

99.88 

Support Vector Machines (SVM) and Hamming 

distance 

25 Raja and Rajagopalan, 

2013 
N/A N ? 98.48 

Artificial Neural Network (ANN) + Genetic algorithm 

(GA) 

26 Roy et  Bhattacharya , 

2005 
CASIA_IrisV1 N Gabor wavelet 97.34 

Support vector Machine (SVM) 

 with different kernel types 

27 Roy et  Bhattacharya , 

2007 

ICE 

WVU 
N 2D Gabor wavelets 

97.7 

95.6 

Multi-Objective Genetic Algorithm (MOGA) and 

asymmetrical Support Vector Machine (SVM) 

28 Saminathan et  al, 2015 
CASIA-IrisV3-

Interval 
N Intensity image 98.5 

Least square method of quadratic kernel Support 

Vector machine (SVM)  

29 Sarhan, 2009 CASIA-IrisV2 N 
2D Discrete Cosine 

Transform (DCT) 
96 Artificial Neural Networks (ANN) 

30 Sharma et  al, 2014 IMP Y DSIFT, LBP and HOG 

92.5* 

71.93

** 

Cross spectral periocular matching via combined 

Neural Networks 

31 Shin et  al, 2009 CASIA-IrisV3 N Gabor wavelet 99.4 ? 
Super-Resolution method based on  

Multiple Multi-Layer Perceptrons (MMLP) 

32 Sibai et  al, 2011 CHEK N RGB image 93.3 Feedforward Neural Network (FNN) 

33 Srivastava et al., 2014 CASIA N 
Evolutionary fyzzy 

clustering 
98.12 

Evolutionary fuzzy clustering and functional modular 

neural network 

34 Sundaram and Dhara, 

2011 
UBIRIS.V1 N Haralick features 97 

Haralick features + Probabilistic Neural Network 

(PNN) 

35 Wagdarikar and 

Subbaraman, 2010 
CASIA-IrisV1 N ICA / SVD 96.29 

Feedforward Back-Propagation Neural Network 

(FBPNN) 

36 Zhang et  al N/A N N/A 99.33 
Adaptive Particle Swarm Optimization Algorithm 

(APSOA) 

37 Zhou et  al, 2008 Proprietary N 
Gabor wavelet +  

2D DPCA 
99.3 Gabor Wavelet Neural Network (GWNN) 
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The only work among the ones mentioned in this survey that 

reports an extensive comparison among MLP, RBF and SVM by 

varying, e.g., momentum, step size in hidden and output layers, 

learning rules and number of neurons in the hidden layer, in the 

case of iris recognition is (Khedkar and Ladhake, 2013). 

Contrarily to (Byvatov et al., 2003), the experiments show an 

advantage of the single-hidden-layer MLP (with momentum BP) 

over other architectures considered, achieving an accuracy of 

95% that is, however, slightly lower that results achieved by 

other surveyed methods. To this regards, it is to consider the wide 

variety of features used for classification, and of architectures. A 

direct comparison is very difficult if not carried out in the single 

works, since experiments are very often hardly repeatable, due to 

the lack of a common benchmark. As a matter of fact, a further 

difficulty for a thorough discussion is that in many cases, only 

part of the datasets are used, and that part is randomly chosen or 

not clearly identified, so that even reproducing the experiments 

exactly is quite unfeasible. A particular advantage of an SVM 

classifier is   that the   classifier function is not influenced by the 

whole data set and the results depend only on the support vectors. 

Differently from ANN, whose complexity rapidly grows with 

data dimensionality, another   characteristic of SVM is the 

possibility to exploit kernel functions to efficiently deal   with a 

very large number of features, which makes it attractive when the 

problem at hand requires dealing with high-dimensional features. 

In both cases, the combination with a suitable strategy for 

relevant feature selection   might achieve higher efficiency and 

better results.  

Among different types of ANNs, the difference in 

performance can be due to a number of architectural choices that 

range from the kind of features used for training, and therefore 

for classification, to the network structure. The work by Godara 

and Gupta (Godara and Gupta, 2012) provides an interesting 

description of a number of ANN architectures that can be used 

for iris recognition. Unfortunately, no experimental result is 

presented to support the selection of the best one. 

Regarding ANNs, we can observe that in general the number 

of nodes in input layer is equal to the dimension in feature vector 

and the number of nodes in the output is equal to number of 

subjects in the dataset (classes). An interesting approach to solve 

the problem of the high number of classes might be the 

modularization of the network according to subsets of 

individuals, instead of designing modules with different functions 

(Gaxiola et al., 2010; Melin et al., 2012). However, the 

integration of results must be accurately designed, and 

experiments should be carried out to verify is different 

subdivisions may lead to different results, As a matter of fact, the 

average inter-class differences might differ from one module to 

the other, and it would be interesting to check if this  might affect 

the final result. The problem of the choice of images in clusters 

has been recently addressed by fuzzy clustering techniques 

(Srivastava et al., 2014). 

While modularization can help solving the problem of a huge 

output, GA and PSO  are possible approaches to reduce the input 

complexity by selecting the most relevant features. In addition, 

the same techniques can also allow optimizing the structure 

(layers and connections) of the network. Given this, the learning 

algorithm also depends on the kind of extracted features. 

Wavelets seem to be especially suited to capture the iris pattern at 

different resolutions. However, there is room for further research 

and we expect that new results in this direction will come by 

going deeper for learning more discriminative and different type 

of features. Deep neural architectures like Convolutional Neural 

Networks (CNN) seem a viable solution along this direction.  

Also, it would be worth investigating the specific relation 
between features, network structure and learning algorithm. This 
requires first of all to working on a common benchmark, to avoid 
the influence of a specific dataset on the overall system 
performance or to introduce bias in the comparison of different 
approaches. Unfortunately, this is not the case yet with   ML for 
iris recognition, therefore, notwithstanding the very high 
performance reported, it is difficult to evaluate the true 
robustness of the different systems. We can notice that the 
declared performance is comparable if not better that state-of-the-
art. However, the fact that it is often not clear how many 
subjects/classes are involved makes such results difficult to 
appreciate when not questionable at all. It is also to notice that 
most works use CASIA as dataset. Given the images in the  
papers, that seldom specify the version of the dataset used, it 
seems that many works use version 1 or some version where the 
pupil is very well identifiable. The union of controlled conditions 
and of near-infrared illumination makes up a different problem 
than using more challenging datasets, e.g., UBIRIS (1 or 2). A 
more extensive experimentation with the latter datasets would 
allow a more reliable evaluation of the suitability of ML 
approaches for iris recognition. 

4. Conclusions 

Though iris recognition is a relatively young field in 

biometrics and in pattern recognition in general, it is interesting 

to observe that ML techniques have not been fully investigated 

and exploited for this problem. As a matter of fact, most available 

works in literature developing this research line come from the 

last  few years. A possible explanation can be identified in the 

complex input structure, and in the high number of classes to 

discriminate.  

Different types of neural networks have been investigated as 

feature classifiers in this context, e.g., WPNN, BPNN and 

RBFNN. Each technique has its peculiar advantages. For 

instance, RBFNN does not require any mathematical description 

of how input and output features are connected. Neural networks 

have high training time so researchers test methods to hybridize 

them with the PSO and GA to reduce their complexity. 

SVM allows the use of various kernel functions to avoid the 

explicit mapping of feature vectors onto a higher dimensional 

space. The aim of the latter operation is to find a linear boundary 

among classes, that however might not be possible to establish. 

Deep learning is the new frontier of Machine Learning, and 

this approach has the potential to solve all the above problems. It 

will be interesting in the future to compare its performance and 

computational demand with those of more traditional algorithms. 
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