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a b s t r a c t

Objective: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that seriously affects
women’s health. The disorder is characterized by the formation of many follicles in the ovary. Currently
the predominant diagnosis is to manually count the number of follicles, which may lead to inter-observer
and intra-observer variability and low efficiency. A computer-aided PCOS diagnostic system may over-
come these problems. However the methods reported in recently published literature are not very
effective and often need human interaction. To overcome these problems, we propose an automated
PCOS diagnostic system based on ultrasound images.
Methods and materials: The proposed system consists of two major functional blocks: preprocessing phase
and follicle identification based on object growing. In the preprocessing phase, speckle noise in the input
image is removed by an adaptive morphological filter, then contours of objects are extracted using an
enhanced labeled watershed algorithm, and finally the region of interest is automatically selected. The
object growing algorithm for follicle identification first computes a cost map to distinguish between the
ovary and its external region and assigns each object a cost function based on the cost map. The object
growing algorithm initially selects several objects that are likely to be follicles with very high probabilities
and dynamically update the set of possible follicles based on their cost functions. The proposed method
was applied to 31 real PCOS ultrasound images obtained from patients and its performance was compared
with those of three other methods, including level set method, boundary vector field (BVF) method and
the fuzzy support vector machine (FSVM) classifier.
Results: Based on the judgment of subject matter experts, the proposed diagnostic system achieved 89.4%
recognition rate (RR) and 7.45% misidentification rate (MR) while the RR and MR of the level set method,

the BVF method and the FSVM classifier are around 65.3% and 2.11%, 76.1% and 4.53%, and 84.0% and 16.3%,
respectively. The proposed diagnostic system also achieved better performance than those reported in
recently published literature.
Conclusion: The paper proposed an automated diagnostic system for the PCOS using ultrasound images,
which consists of two major functional blocks: preprocessing phase and follicle identification based
on object growing. Experimental results showed that the proposed system is very effective in follicle

agno
identification for PCOS di

. Introduction
Polycystic ovary syndrome (PCOS), also known as
tein–Leventhal syndrome or functional ovarian hyperandro-
enism, is a complex endocrine disorder associated with a
ong-term lack of ovulation and excessive androgens [1]. The
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disorder is characterized by the formation of many follicles in
the ovary, a process related to the ovary’s failure to release an
ovum [1]. PCOS is one of the most common causes of infertility.
Symptoms may include various menstrual problems, hirsutism,
endocrine abnormalities, acne, obesity, infertility, and diabetes
with insulin resistance or hyperinsulinemia. Even if it may not
cause an immediate problem, PCOS can have significant long-term
effects, including diabetes, heart disease, and endometrial or breast

cancer [2]. Accurate early diagnosis of PCOS is very important for
its treatment.

Currently the prevalent method used by doctors for the PCOS
diagnosis is to manually identify follicles and count the number in
ovary ultrasound images, which is then used as a critical criterion
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o determine the PCOS diagnosis. However, manually identifying
ollicles may cause several problems, such as inter-observer and
ntra-observer variability and low efficiency. The tedious and time-
onsuming nature of manual operations for doctors may cause the
naccuracy of the PCOS diagnosis, which could seriously affect the

omen’s health. These problems can be overcome by an intelligent
COS diagnostic system which automatically identifies follicles and
hen counts the number of follicles. Nonetheless, to automatically
etect follicles in ovary ultrasound images is not an easy task and
everal issues must be addressed in order to develop an automated
COS diagnosis system.

Speckle noise is the major source of contamination in ultra-
ound images [3], which is characterized by a granular pattern
f abrupt change of pixel intensity [4]. The extensive presence of
peckle noise in ultrasound images makes it difficult to segment
he image into different regions, which is critical in automatic
ollicle detection. In addition, different structures in ovary ultra-
ound images are not totally distinct and as a result the boundaries
etween them are neither clear nor continuous. Only a few
pproaches were proposed before for ovarian follicle analysis using
omputer-aided methods. Muzzolini et al. segmented one follicle
n ultrasound images using multi-resolution textures [5]. Pierson
t al. analyzed the responses of the ovary and individual folli-
les to different medicine stimuli by manually tracing follicular
oundaries [6]. Sarty et al. developed a semi-automated method
or follicle segmentation, where manual tracing was often required
7]. Krivanek and Sonka segmented the follicle using the water-
hed segmentation technique [8]. These methods mainly focused
n the segmentation of one single follicle. They also required rel-
tively high quality ovary ultrasound images and involved manual
perations.

Potočnik and Zazula proposed an automated ovarian follicle seg-
entation method [9], which first extracted candidates of follicles

y region growing and then identified follicles according to four
mpirical criteria. This method’s recognition rate (RR) was reported
s around 88% [9]. Although this method was completely auto-
atic, it relied on parameters that were determined empirically.

otočnik and Zazula later improved their method [10,11] and devel-
ped several approaches to estimate parameters used for region
rowing and introduced a sequence of images to identify follicles
ased on a Kalman filter. Although the new method was more auto-
ated or computerized than their previous one, its recognition rate

educed to around 78%. Cigale and Zazula developed an approach
or automatic ovarian follicle segmentation based on cellular neu-
al networks [12]. Although this approach had lower computational
omplexity than previous methods, its recognition rate was merely
0%.

The major difficulty of automated follicle segmentation in ovary
ltrasound images is to exactly identify real follicles under the

nterference of heavy speckle noise in ultrasound images. Vari-
us segmentation methods have been developed to extract the
ontours of objects in ultrasound medical images [13–15]. These
egmentation methods were mainly based on boundary or region
nergy minimization. A straightforward attempt for follicle detec-
ion would be to extract the ovary boundary first using these
egmentation methods [13–15]. However, the ovary boundaries in
ltrasound images usually are not salient and follicles also appear
s local minima, making these segmentation methods unsuitable
or the purpose of follicle detection. Since follicles may appear as
ifferent features in ovary ultrasound images, another attempt for
ollicle detection would be to design a classifier [16,17] based on

hese features. However, our experimental results showed that a
ingle follicle is not clearly discriminable from other local minima
ased on these features. These classification based methods did not
ake into account the characteristics of the ovary region and the
onnectivity or neighborhood between follicles. To achieve better
Medicine 51 (2011) 199–209

results for follicle identification, it is needed to have a method that
simultaneously considers the properties of follicles, the boundary
information of the ovary and the different region information in the
ovary ultrasound image.

In this paper we propose a novel, effective and automated
method for the computer-aided diagnosis of PCOS using ovary
ultrasound images. The proposed method is based on the fact that
follicles always appear as low-echo local minimum areas inside the
contour of the ovary. It consists of two major functional blocks:
preprocessing phase and follicle identification based on object
growing. The preprocessing phase automatically selects the region
of interest and extracts the local minima as possible follicle can-
didates. Then a cost map is computed to distinguish between the
ovary and its external region and each object (local minimum) is
assigned a cost function based on the cost map. The object grow-
ing algorithm initially selects several objects that are likely to be
follicles with very high probabilities and dynamically update the
set of possible follicles based on their cost functions. The pro-
posed method was applied to 31 ultrasound images obtained from
PCOS patients and its results were compared with those of three
other methods, including level set, boundary vector field (BVF),
and fuzzy support vector machine (FSVM) classifier. Experimental
results showed that the proposed method is very effective in folli-
cle identification and achieved better performance than previously
proposed ones.

The remainder of this paper is organized as follows. Section
2 describes in detail the proposed method, including the prepro-
cessing phase and follicle identification based on object growing.
Section 3 discusses the experimental results of the proposed
method and compares its performance with those of three other
methods. Some discussions are presented in Section 4 and finally
conclusions are drawn in Section 5.

2. Methods

The proposed method consists of two major functional blocks:
preprocessing phase and follicle identification based on object
growing. The block diagram of the proposed method is shown in
Fig. 1.

2.1. Preprocessing phase

The preprocessing phase performs three tasks: adaptive mor-
phological filtering, local minimum extraction, and region of
interest selection. First, the speckle noise in the input PCOS
ultrasound image is reduced significantly using an adaptive mor-
phological filter we developed recently [18]. Then an enhanced
labeled watershed algorithm is proposed to extract local min-
ima that are possible candidates for follicles. Finally the region
of interest is computed iteratively based on the spectral residual
approach [19]. The results of the preprocessing phase are then
used by subsequent object growing for automatic follicle identi-
fication.

2.1.1. Adaptive morphological filtering
Speckle noise is characterized by a granular pattern of abrupt

changes of pixel values [4] and it is the major source of con-
tamination in ultrasound images [3]. Speckle noise reduces the
contrast and obscures diagnostically important details. Various
methods have been proposed to suppress speckle noise [20–22].
Among them, the adaptive morphological filter developed by

the authors is an effective method for speckle reduction [18],
which effectively depresses abrupt changes of pixel values due
to the speckle [4] and facilitates subsequent image processing
tasks such as segmentation. In this paper, the adaptive mor-
phological filter is used to suppress speckle noise for extraction
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corresponding structuring elements for morphological filtering
Fig. 1. The block diagram of the proposed automated PCOS diagnostic system.

f local minima. It first computes a set of structuring factors
nd then constructs the corresponding structuring elements. The
tructuring factors are used to detect the noise structures in
he input image and the structuring elements are applied to
ffectively suppress the noise based on detected noise struc-
ures.

.1.1.1. Structuring factors. Abrupt changes of pixel values due to

he speckle noise mainly appear as “convex” or “concave” struc-
ures in one dimension. Thus, we can design a set of structuring
actors to represent these noise structures. Assume that the length
f abrupt changes due to the speckle noise is less than 2n + 1 pixels.
Medicine 51 (2011) 199–209 201

First, a set of row vectors X is defined as

X =

⎡
⎢⎢⎢⎢⎢⎣

X1

X2

...

Xn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

x11 x12 · · · x1(2n+1)

x21 x22 · · · x2(2n+1)

...
...

. . .
...

xn1 xn2 · · · xn(2n+1)

⎤
⎥⎥⎥⎥⎥⎦ , (1)

where the ith row vector is Xi = [xi1, xi2, . . ., xi(2n+1)],

xij =
{

−1 when |j − n − 1| < i
1 else

. For example,

X =
[

1 1 −1 1 1
1 −1 −1 −1 1

]
when n = 2 and X =[

1 1 1 −1 1 1 1
1 1 −1 −1 −1 1 1
1 −1 −1 −1 −1 −1 1

]
when n = 3. X ′

i can be fur-

ther computed by normalizing Xi after subtracting the mean value
of Xi. The resulting set of row vectors is denoted as W,

W =

⎡
⎢⎢⎢⎢⎢⎣

X ′
1

X ′
2

...

X ′
n

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

W1

W2

...

Wn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

w11 w12 · · · w1(2n+1)

w21 w22 · · · w2(2n+1)

...
...

. . .
...

wn1 wn2 · · · wn(2n+1)

⎤
⎥⎥⎥⎥⎥⎦ . (2)

Each row vector can represent the specific “concave” structure
in one dimension and is used to detect abrupt changes of different
length.

To detect features of different directions, a set of new structuring
factors Wi1, Wi2, Wi3, Wi4 are constructed based on Wi as

W i1 =
[

wi1 wi2 · · · wi(2n+1)

]
,

W i2 =

⎡
⎢⎢⎢⎢⎢⎣

wi1

wi2

. . .

wi(2n+1)

⎤
⎥⎥⎥⎥⎥⎦ ,

W i3 =

⎡
⎢⎢⎢⎢⎢⎣

wi1

wi2

...

wi(2n+1)

⎤
⎥⎥⎥⎥⎥⎦ ,

W i4 =

⎡
⎢⎢⎢⎢⎣

wi1

wi2

. .
.

wi(2n+1)

⎤
⎥⎥⎥⎥⎦ .

(3)

To represent all possible noise structures, we need an array of

size n × 4, that is,

⎡
⎢⎢⎣

W11 W12 W13 W14
W21 W22 W23 W24

...
...

...
...

Wn1 Wn2 Wn3 Wn4

⎤
⎥⎥⎦. Elements in this

array can represent different structures of abrupt changes of pixel
values. In the following section, we will discuss how to construct
based on the detected speckle noise structures.

2.1.1.2. Structuring elements. Opening and closing operations are
commonly used morphological operations [23]. The morphologi-
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al opening can depress “convex” structures whose size is smaller
han the structuring element while the morphological closing
an depress “concave” structures whose size is smaller than the
tructuring element. In order to perform adaptive morphological
ltering based on different noise structures, we define the follow-

ng structuring elements Bi1, Bi2, Bi3, Bi4 for the structuring factors
i1, Wi2, Wi3, Wi4 defined in the previous section.

Bi1 =
[

1 1 · · · 1
]︸ ︷︷ ︸

(i+1)

,

Bi2 =

⎡
⎢⎢⎢⎢⎢⎣

1

1

. . .

1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(i+1)

,

Bi3 =

⎡
⎢⎢⎢⎢⎢⎣

1

1

...

1

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(i + 1),

Bi4 =

⎡
⎢⎢⎢⎢⎣

1

1

. .
.

1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(i+1)

.

(4)

Such structuring elements enable the precise depression of
pecific abrupt changes of pixel values due to the speckle. Mor-
hological operation with different structuring elements will be
pplied to different regions based on the detected speckle noise
tructure in that region.

.1.1.3. Morphological filtering. To detect the noise structures, the
riginal ultrasound image Iorig is convolved with each structuring
actor as follows

SF
ij = Iorig ⊗ W ij i = 1–n, j = 1–4 (5)

here ⊗ represents the operation of convolution and ISF
ij is the

esult of convolution of Iorig with structuring factor Wij. Thus a
otal of n × 4 images are obtained after this convolution; in other
ords, there are n × 4 resulting values for each pixel location (p, q)

s shown below.

ISF
11(p, q) ISF

12(p, q) ISF
13(p, q) ISF

14(p, q)

ISF
21(p, q) ISF

22(p, q) ISF
23(p, q) ISF

24(p, q)

...
...

...
...

ISF
n1(p, q) ISF

n2(p, q) ISF
n3(p, q) ISF

n4(p, q)

⎤
⎥⎥⎥⎥⎥⎦

In the above matrix, the element with the largest norm, denoted
s ISF

MN(p, q), represents the most possible structure of abrupt

hanges in the pixel’s neighborhood. Then the corresponding
tructuring element BMN defined in Eq. (4) is used to perform mor-
hological filtering of Borig in the neighborhood determined by
he structuring element BMN. If the value ISF

MN(p, q) is positive, a
losing operation is applied; otherwise, an opening operation is
Medicine 51 (2011) 199–209

applied. The resulting image after adaptive morphological filtering
is denoted as Idespeckled.

2.1.2. Local minimum extraction
After adaptive morphological filtering, it is necessary to extract

local minima where follicles can possibly appear. The watershed
algorithm is an effective segmentation method to detect multi-
ple objects [24]. However, the classical watershed algorithm often
leads to excessive segmentations, especially for noisy images such
as ultrasound images. The labeled watershed algorithm was devel-
oped to overcome this problem [23] and it introduced a label mask
to locate primary local minima. With the label mask, secondary
local minima are depressed. However, the computation of the label
mask is dependent on a threshold parameter indicating whether
the local minimum is primary or secondary according to its depth
[23]. The threshold parameter is often empirically determined.
In addition, primary local minima may have significantly varying
depths, often leading to omissions of primary local minima due to
the use of only one single threshold value. In this paper, we pro-
pose an enhanced labeled watershed algorithm that utilizes a more
robust method to compute the label mask. The enhanced labeled
watershed algorithm is detailed as follows.

First, the edges in the denoised image Idespeckled are computed
using Sobel edge detection [23] and the resulting image is denoted
as Iedge. Then a gray depth image Idepth is computed based on
Idespeckled as follows,

Idepth = 1 − 1
T

∫ T

0

M(Idespeckled, x)dx, (6)

where T is a parameter defining the upper limit of gray depth in an
image, M(I, x) is a masking function that finds pixels in the area of
local minima of image I whose gray depth is greater than x [23].
M(I, x) is defined as

M(I, x) =

⎧⎪⎨
⎪⎩

1 for pixels in the area of local minima of

I whose gray depth is greater than x

0 else

(7)

For a discrete image whose gray range is from 0 to 255, Eq. (6)
can be rewritten as

Idepth = 1 − 1
255

255∑
x=0

M(Idespeckled, x) (8)

The gray depth image Idepth describes the gray depth property of
an image based on its local minima. Each primary local minimum
in the image Idespeckled is transformed into a more uniform local
minimum in its gray depth image Idepth using Eqs. (6) and (7).

A series of operations is then applied to the gray depth image
Idepth in order to compute the watershed boundary. First a morpho-
logical closing operation with a structuring element of size 3 × 3
is applied to Idepth to suppress noise and the resulting image is
denoted as Idepth smooth, which is then used as the input to the func-
tion M(Idepth smooth, x)with x set to 1. The resulting image, denoted as
Imin mask, represents the primary local minima of the original image
Iorig. An Euclidean distance transform is then applied to Imin mask to
generate the image Imin dist. Both Imin mask and the watershed bound-
ary of Imin dist are used as the label mask. The edge pixels in the pixel
map Iedge located in the label mask are then set to the minimum
of Iedge within the mask; the watershed boundary of the resulting

image is computed and is denoted as Ibound watershed. The extracted
watershed boundaries are contours of objects and some of them
contain follicles. The next step is to select a region of interest to
reduce the image size and thus the number of local minima that
are possibly follicles.
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Sk), j = 1, 2, . . . , n; k = 1, 2, . . . , n, k /= i ,
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.1.3. Iterative region of interest selection
Selecting an appropriate region of interest (ROI) can reduce

omputational complexity and improve accuracy in computer
ision and pattern recognition. Among the various methods pro-
osed for ROI selection [19,25,26], the spectral residual approach
19] is an effective approach that is independent of features, object
ategories, or other forms of prior knowledge of objects. By ana-
yzing the log-spectrum of an input image, the spectral residual
pproach extracts the spectral residual of an image in the spec-
ral domain, which contains the saliency information of the image
19]. Then the corresponding saliency map is constructed in the
patial domain by applying exponential transform, inverse Fourier
ransform, and Gaussian filtering to the spectral residual. The larger
ray values in the saliency map represent more saliency at the
orresponding locations.

To improve the performance of the spectral residual approach, in
his paper we propose an iterative ROI selection algorithm based on
he spectral residual approach. The essence of the spectral residual
pproach is to find the region with more variations in the spectral
omain. To take advantage of the polycystic characteristic of the
vary in the ultrasound image, the result of the enhanced labeled
atershed algorithm, Ibound watershed, is used as the input image of

he proposed iterative ROI selection algorithm, which is detailed as
ollows.

a) Calculate the saliency map of the input image with the spectral
residual approach.

b) Locate the pixel with the largest value in the saliency map.
Resize the input image with this pixel as the center with a
new size calculated as 1 −

∑i
k=1(1/2)k+1 of that of the original

image, i denotes the current iteration step number.
c) The resized image is used as the new input image; then go to

step 1. The iterative ROI selection algorithm can be terminated
if the results of two consecutive iterations are close enough or
by limiting the maximum number of iterations.

The output of the iterative ROI selection algorithm is denoted
s IROI. The iterative ROI selection produces better results than
he original spectral residual algorithm. The equation to calculate
he new size of the input image for each iteration is determined
ased on the size of an ovary in the ultrasound image. Experimen-
al results showed the size of the selected ROI is about 1/4 of that of
he original ultrasound image, which is sufficiently large to contain
he ovary. Inside the selected region of interest, local minima iden-
ified by the enhanced labeled watershed algorithm are candidates
f real follicles.

.2. Follicle identification based on object growing

It is apparent that in PCOS ultrasound images, real follicles are
urrounded by the ovary boundary and local minima outside the
vary are separated from real follicles by the ovary boundary. Char-
cteristics of the region that is inside the ovary but not follicles are
ifferent from those of the region outside the ovary. Based on these
bservations, regions in a PCOS ultrasound image can be generally
lassified into three classes as shown in Fig. 2. Class 1 represents
ollicles; class 2 represents the region those are inside the ovary
ut not follicles; class 3 is the region outside the ovary. These three
lasses exhibit varied characteristics.

Follicles are local minima inside the ovary. Thus, if a convex hull

27] is constructed to include some local minima in the ovary, the
onvex hull should consist of regions of class 1 and class 2. Then if
new local minimum is included in the convex hull, there are two
ossibilities. One is that the new local minimum is inside the ovary.
he new convex hull including the new local minimum should still
Fig. 2. Regions in a PCOS ultrasound image can be generally classified into three
classes: class 1 represents follicles, class 2 represents the regions those are inside
the ovary but not follicles, and class 3 is the region outside the ovary. These three
classes exhibit different characteristics.

consist of classes 1 and 2. The other possibility is that the new local
minimum is outside the ovary and the resulting new convex hull
should consist of all three classes.

With consideration of the ovary boundary, the differing charac-
teristics of these three classes can be used to effectively determine
the relationship of a local minimum with respect to the ovary
boundary. In this section, we propose a method that is called folli-
cle identification based on object growing. We first define an object
cost function for the local minima based on a cost map, which repre-
sents the regional characteristics. Due to the process of the iterative
ROI selection, local minima around the center of the region of inter-
est can be assumed to be follicles with high probabilities and an
initial set of follicles is formed by including these local minima.
Then this initial set of follicles is expanded by adding new objects
(other local minima) if their costs are less than a cost threshold
that is dynamically computed and updated. The complete set of
follicles can be found by gradually growing objects in the initial
set. Although this process is similar to the region growing method
[28], it should be noted that the region growing is based on pix-
els only while object growing is based on objects and thus takes
into account the neighborhood information. The details of object
growing are described as follows.

2.2.1. Object cost function
Assume that an image I has N objects of interest, labeled as 1,

2, . . ., N, among which n objects (for the sake of simplicity, their
labels are 1, 2, . . ., n) have been identified as elements of the target
set T. We first construct the convex hull of the n objects and then
define the cost of object i inside the convex hull of the n objects as
follows.

Costinternal =
∑

(x,y) ∈ ˝int
C(x, y)∣∣˝int

∣∣ , (9)

where C is the cost map representing properties of different regions
in the image I, which will be discussed in the next section, and
the operator |˝int| denotes the cardinality of the set ˝int, which is
defined as

{ ⋃ ⋃ }

(10)

where {S1, S2, . . ., SN} is the set of regions occupied by the N objects
in the image I and G(·) is a functionthat calculates the convex hull.
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o understand the definition (10) better, define A = G(
⋃

j

Sj), j =

, 2, . . . , n, and B = G(
⋃

k

Sk), k = 1, 2, . . . , n, k /= i. It can be

een that A is the convex hull containing n objects while B is the
omplement of the convex hull containing n − 1 objects exclud-
ng object i. Thus, ˝int, which is the intersection between A and B,
epresents the region induced by adding object i to the target set T.

Similarly, we define the cost of an object i′ outside the convex
ull of the n objects in the target set T as

ostexternal =
∑

(x,y) ∈ ˝ext
C(x, y)∣∣˝ext

∣∣ , (11)

here C is the same as that in Eq. (10) and the set ˝ext is defined as

ext =

{
(x, y) ∈ G(

⋃
j

Sj) ∩ G(
⋃

k

Sk), j = 1, 2, . . . , n, i′; k = 1, 2, . . . , n

}
.

(12)

Similarly, the set ˝ext represents the region induced by adding
bject i′ to the target set T. Finally, we define a cost threshold CT as

T = ˇ ·
∑

(x,y) ∈ � C(x, y)∣∣� ∣∣ , (13)

here ˇ is a tuning parameter to be determined empirically and
he set � is defined as

=

{
(x, y) ∈ G(

⋃
j

Sj) ∩
⋃

k

Sk, j = 1, 2, . . . , n; k = 1, 2, . . . , n

}
. (14)

The set � represents the region the convex hull of the n objects
ut excluding the n objects themselves. The cost threshold CT is
sed as a criterion to add a new object or remove an existing object
rom the target set T. The parameter ˇ represents the difference in
he costs of the internal region and external region with respect
o the ovary. A ˇ value greater than 1 will ensure an initial set of
ollicles will grow as a result of the object growing algorithm, which
s to be discussed later. The selection of ˇ value will be further
iscussed in Section 3.

The example in Fig. 3 illustrates the sets ˝int, ˝ext, and � defined

bove. Objects labeled as a, b, c, d, e, f and g represent candidates of
ollicles. It is further assumed that b, c, d, e, f and g are in the target
et T. Then the set ˝int for object g consists of pixels in the region C.
he set ˝ext for object a consists of pixels in the region A. Finally the
et � consists of pixels in the regions B and C excluding follicles.

Fig. 4. The effects of ˇ value on the reco
objects b, c, d, e, f, and g are in the target set T. The set ˝int for object g consists of
pixels in the region C. The set ˝ext for object a consists of pixels in the region A.
Finally the set � consists of pixels in the regions B and C (excluding the follicles).

2.2.2. Cost map
The object cost function defined in the previous section made

use of the cost map C(x,y), a function defined for each pixel (x,y)in
the image. In order to detect follicles that are inside the ovary, the
cost map should have different values depending on the pixel’s rel-
ative location with respect to the ovary boundary. More specifically,
pixels inside the ovary should have lower costs than their counter-
parts outside the ovary. In this paper, we define the cost map as a
concatenation of three factors as follows.

C = IROI edge · IROI ovary mask · IROI mean, (15)

where three factors IROI edge, IROI ovary mask and IROI mean represent
different features of the image. First, IROI edge is obtained by apply-
ing Sobel edge detection to the region of interest IROI extracted in
Section 2.1.3. IROI edge contains edge information for all the features
in IROI, including the ovary boundary, the local minima inside the
ovary (corresponding to follicles), and the local minima outside
the ovary. The edges of local minima in IROI edge should be further
removed because they interfere with the effect of ovary bound-
ary. The factor IROI ovary mask is defined for such purpose, which is
obtained by dilating the mask IROI min mask with a 3 × 3 structur-
ing element, where IROI min mask is a binary mask representing local
minima. Finally, the factor IROI mean is the result of filtering IROI with
a mean filter of size 3 × 3. The inclusion of IROI mean is based on the
fact that pixels outside the ovary often have higher intensity val-
ues than those inside the ovary; thus the average of pixel values can

effectively differentiate regions internal and external to the ovary.
In summary, the computation of the cost map using these factors
can effectively distinguish between regions internal and external
to the ovary.

gnized and misidentified follicles.
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Table 1
Results of the proposed diagnostic system when the ˇ changes.

Evaluation parameter Results with different values of the ˇ

ˇ = 1.1 ˇ = 1.4 ˇ = 1.5 ˇ = 1.6 ˇ = 1.8 ˇ = 2.0

Recognition rate 55.7% 77.6% 86.0% 89.4% 90.5% 90.9%

2

s
d

(

(

(

(

above, it can be seen that the object growing algorithm consid-

F
(
a

Misidentification rate 2.65% 4.21% 6.58% 7.45% 10.8% 14.0%
F1 score 0.709 0.857 0.896 0.910 0.898 0.884

.2.3. Object growing algorithm
With the object cost defined in previous sections, detailed

teps of the object growing algorithm for follicle identification are
escribed as follows.

1) Find three objects (local minima) around the center of the
region of interest and include them in the target set T. Initialize
the cost threshold CT according to (13) and the parameter ˇ to
a reasonable value (to be discussed in Section 3).

2) Compute the convex hull for the elements of the set T. Calculate
the cost of objects outside the convex hull according to (11).
If the costs of some objects are less than or equal to the cost
threshold CT, add the one with the minimum cost to the set T.

3) If any object is added to the set T, recalculate the cost threshold

CT and go to step 2. Otherwise go to step 4.

4) Calculate the cost of each object inside the convex hull accord-
ing to (9). Remove the objects whose costs are greater than the
cost threshold CT from the set T.

ig. 6. The results of the proposed PCOS diagnostic system. (a) The original ultrasound ov
d) Result of the enhanced labeled watershed algorithm. (e) The selected region of interes
lgorithm. (i) Final result with circles indicating detected follicles.
Fig. 5. F1 scores of the proposed system with different values of ˇ.

(5) If any object is removed from the set T, recalculate CT and go to
step 2. Otherwise stop. Record elements in the set T, which are
the detected follicles found by the object growing algorithm.

From the object cost definition and the detailed steps described
ers both the connectivity between objects and the neighborhood
around them. The effectiveness of the object growing algorithm
will be demonstrated by the experimental results to be discussed
next.

ary image. (b) Result of adaptive morphological filtering. (c) The gray depth image.
t. (f) Extracted candidates of follicles. (g) Cost map. (h) Result of the object growing
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Fig. 7. Two ovary ultrasound images (a) and (c) and results o

. Experimental results

Thirty-one ultrasound images were collected from PCOS
atients with their consent using Philips Envisor 2540A Ultrasound
ystem with a C8-4V trans-vaginal probe. All experiments are per-
ormed by Matlab 7.0 programs on a PC with Xeon CPU at 2.0 GHz
nd 2 GB memory. The execution time of the proposed method is
round 30 s for processing an image. A total of 264 follicles were
anually diagnosed by experienced physicians (gynecologists). To

valuate the effectiveness of follicle identification algorithms, two
etrics are calculated: recognition rate (RR) and misidentification

ate (MR). The recognition rate is defined as the ratio between rec-
gnized follicles (true positives) and all follicles (true positives and
alse negatives) while the misidentification rate is the ratio between
ll misidentified objects (false positives) and all recognized objects
true positives and false positives) [9–12].

As noted in Section 2, the tuning parameter ˇ in the object grow-
ng algorithm denotes the cost difference of the internal region and
xternal region with respect to the ovary. It represents the prior
nowledge that the ovary is has relatively lower echo (or intensity)
han other regions in the ultrasound image. Thus, when the initial
arget set contains objects that are inside the ovary, initializing ˇ
ith a value greater than 1 ensures that the object growing algo-

ithm will first expand the initial target set. Fig. 4 shows the effect
f ˇ value on the numbers of recognized and misidentified folli-

les. It can be seen both numbers monotonically increase when ˇ
ncreases. Table 1 shows the different RRs and MRs of the proposed
iagnostic system when ˇ changes and both RR and MR increase
hen ˇ increases. To further investigate the effects of ˇ value on

he proposed algorithm, Fig. 5 plots the curve of F1 score, which
roposed system (b) and (d), circles denote detected follicles.

is an effective measure to simultaneously evaluate the RR and MR
[29] and can be defined as

F1 = 2 · RR · (1 − MR)
RR + (1 − MR)

(16)

A large value of F1 score is desirable when F1 score varies
between 0 and 1. According to our experiments, ˇ values greater
than 1.5 produced acceptable results. In this paper, ˇ is set to a fixed
value of 1.6 in the proposed diagnostic system.

Fig. 6 shows the detailed results of the proposed diagnostic sys-
tem applied to an ovary ultrasound image. Fig. 6(a) is the original
image. Fig. 6(b) is the result of the adaptive morphological filter-
ing and it can be seen that the speckle noise has been removed.
Fig. 6(c) shows the gray depth image produced by equation (8).
Fig. 6(d) shows the result of the enhanced labeled watershed algo-
rithm. Fig. 6(e) shows the selected region of interest. Fig. 6(f)
shows extracted candidates of follicles for the object growing algo-
rithm. Fig. 6(g) shows the established cost map. Fig. 6(h) is the
result of the object growing algorithm. Circles in Fig. 6(i) represent
the detected follicles. It can be seen that the proposed diagnos-
tic system is able to identify follicles accurately. Fig. 7 shows two
more examples, in which the proposed method produced correct
results.

To further demonstrate the effectiveness of the proposed algo-
rithm, its performance is compared with three other proposed

methods for follicle identification: geometric active contour using
level set [15], boundary vector field (BVF) parametric active contour
[14], and an FSVM classifier [16]. Both the level set based geometric
active contour and the BVF parametric active contour are variants
of the active contour model, which is a general method used to
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ig. 8. Experimental results of different methods on 31 cases. (a) The proposed diag
nitialized with the object growing result. (d) The BVF method with circle initializat
or the region of interest without PCA. (g) The FSVM classifier for the region of inter

xtract the object contour [30–33]. Both methods extract the ovary
ontour for the purpose of follicle identification. Results of the pre-
rocessing phase of the proposed diagnostic system are used as

nputs to both methods. Two initial contours are provided to both
ethods: one is a circle in the center of the region of interest and

he other is the contour of the convex hull of objects computed by
he object growing algorithm. The FSVM classifier is used to iden-
ify real follicles based on several features extracted for candidates
f real follicles. A total of 18 features are computed for each folli-
le, which are the Roundness Criterion [34], mean value of saliency,

ean distance to the center of the input image, and 15 coefficients

xtracted by the contourlet transform [35]. A total of 296 samples
re obtained in the region of interest, which is selected by the pre-
rocessing phase of the proposed system. The leaving-one method

s used for this scheme.
system. (b) The level set method with circle initialization. (c) The level set method
) The BVF method initialized with the object growing result. (f) The FSVM classifier
ith PCA.

Fig. 8 gives experimental results of 31 cases. Table 2 shows sta-
tistical results. The F1 scores denote that the proposed diagnostic
system is more effective than the other three methods. The RR of
the proposed diagnostic system is 24.1% higher than the level set
method and 13.1% higher than the BVF method on average. It could
also be observed that the level set method and the BVF method
achieve relatively lower MRs compared with that of the proposed
method. The reason is mainly that these two methods just tend
to converge on the more primary local minima. So the MR could
be relatively lower but the RR would be lower at the same time. It

results in the degradation of the entire performance of the diagnos-
tic system compared with the proposed method. From Table 2, it
can also be seen that using the result of the proposed object growing
algorithm to initialize the BVF method produced relatively better
results, demonstrating the effectiveness of the proposed diagnos-
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Table 2
Comparison of the proposed diagnostic system and other methods.

Methods Results

Recognition rate Misidentification rate F1 score

The proposed diagnostic system (ˇ = 1.6) 89.4% 7.45% 0.910

Level set
Circle initialization 61.7% 0.00% 0.763
Initialization of object growing’s result 68.9% 4.21% 0.801

BVF
Circle initialization 68.9% 2.67% 0.807
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Initialization of object growing’s result

FSVM classifier
No PCA compression
PCA compression

ic system. The RR and MR of the FSVM classifier method are 81.5%
nd 14.9%. The PCA method [36] was also used in the FSVM clas-
ifier to reduce the dimensionality, which produced RR and MR of
6.5% and 17.6%, respectively. However it is worth to note that the
erformance of the FSVM classifier dropped significantly without
sing the results of the preprocessing phase in the proposed diag-
ostic system as inputs. In our experiments, the RR and MR of the
SVM classifier dropped to 69.5% and 29.5%, and 73.5% and 26.5%
ith the use of PCA.

Results of other automatic systems recently published are
eported as 88% RR and 36% MR for [9], 78% RR and 29% MR for
10,11], and 60% RR and 30% MR for [12]. It can be seen that the
roposed diagnostic system is more effective with 89.4% RR and
.45% MR.

. Discussions

As human visual system is extraordinarily competent, the pro-
osed object growing algorithm for follicle identification was

nspired by the cognitive process of the human visual system [37].
t was reported that human perceptual performance of objects is
ased on their prior knowledge. Accurate object recognition needs
he knowledge of how the correct result is formed through the
rior knowledge [37]. For follicle identification, experienced physi-
ians first locate possible follicles that are low echo regions with
elatively regular shapes. Then with such prior knowledge they
earch the most possible contour of the ovary. The search criterion
s that the contour should contain converged possible follicles and
he internal region of the contour should be homogeneous. At the
ame time the contour should be coincident with the inconspicuous
oundary of the ovary in the ultrasound image. The search process
y experienced physicians is dynamic and accomplished in a very
hort time. Finally they accurately recognize all the follicles inside
he ovary.

The proposed object growing for follicle identification is an arti-
cial intelligent method that well mimics the cognitive process
f medical experts and simultaneously considers the properties of
ollicles, the different region information in the ovary ultrasound
mage and the boundary information of the ovary. In this algorithm,
bjects are basic elements, which emphasize the effect of the prior
nowledge. Objects used as follicle candidates are searched with
eatures that one real follicle should have. This treatment ensures
hat properties of follicles are introduced in the algorithm. Then
he cost map is established to distinguish between regions inter-
al and external to the ovary. Based on the cost map, the convex
ull of possible follicles is used to search the most possible set of
bjects as follicles. This process emphasizes the spatial connectiv-

ty of follicles and the contour of the ovary which contains follicles.
he boundary information of the ovary is embedded in the itera-
ive process. The dynamic minimization of the cost function and
he initialization of the most possible follicle candidates ensure the
onvergence of the proposed method.

[

[

[

83.3% 6.38% 0.882

81.5% 14.9% 0.833
86.5% 17.6% 0.844

5. Conclusion

This paper proposed an automated system for diagnosis of poly-
cystic ovary syndrome using ultrasound images. The proposed
system consists of two major functional blocks: preprocessing
phase and follicle identification based on object growing. In the pre-
processing phase, the speckle noise in the input image is removed
by an adaptive morphological filter, then contours of objects are
extracted using an enhanced labeled watershed algorithm, and
finally the region of interest is automatically selected. The object
growing algorithm for follicle identification first computes a cost
map to distinguish the ovary and its external region and assigns
each object a cost function based on the cost map. The object
growing algorithm initially selects several objects that are likely
to be follicles with very high possibility and dynamically update
the set of possible follicles based on their cost functions. The
proposed automated diagnostic system was applied to 31 real
PCOS ultrasound images and it achieved a recognition rate of
89.4%. The proposed method is more effective than three other
methods discussed in this paper and other recently reported
methods.
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