

A characterization of the corona product of a cycle with some graphs based on its fchromatic index

Adiwijaya, A. N. M. Salman, Djoko Suprijanto, and Edy Tri Baskoro

Citation: AIP Conference Proceedings **1450**, 155 (2012); doi: 10.1063/1.4724133 View online: http://dx.doi.org/10.1063/1.4724133 View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1450?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Characterizing all graphs containing cycles with locating-chromatic number 3 AIP Conf. Proc. **1450**, 351 (2012); 10.1063/1.4724167

The locating-chromatic number of certain Halin graphs AIP Conf. Proc. **1450**, 342 (2012); 10.1063/1.4724165

Wiener index of some graphs AIP Conf. Proc. **1309**, 923 (2010); 10.1063/1.3525226

The Modified Schultz Index of Some Graphs AIP Conf. Proc. **1309**, 920 (2010); 10.1063/1.3525225

Some Sufficient Conditions for Graphs to Be (g,f,n) -Critical Graphs AIP Conf. Proc. **1089**, 178 (2009); 10.1063/1.3078124

A characterization of the corona product of a cycle with some graphs based on its *f*-chromatic index¹

Adiwijaya*,[†], A.N.M. Salman*, Djoko Suprijanto* and Edy Tri Baskoro*

*Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132, Indonesia kang_ady@students.itb.ac.id, {msalman, djoko, ebaskoro}@math.itb.ac.id [†]Algorithm and Computation Research Group, Faculty of Sciences

Institut Teknologi Telkom, Jl. Telekomunikasi No.1 Bandung 40257, Indonesia

Abstract. An *f*-coloring of graph G(V,E) is a generalized edge-coloring such that every vertex v in V has at most f(v) edges colored with a same color. There are many applications of the *f*-coloring, for instance we can use it in order to solve some scheduling problems and some network design problems. The minimum number of colors needed to *f*-color *G* is called an the *f*-chromatic index of *G*, denoted by $\chi'_f(G)$. Any graph *G* has *f*-chromatic index equal to $\Delta_f(G)$ or $\Delta_f(G) + 1$, where $\Delta_f(G) = \max_{v \in V} \{ [d(v)/f(v)] \}$. *G* is called in the *class-1*, denoted by $G \in C_f 1$, if $\chi'_f(G) = \Delta_f(G)$; otherwise *G* is called in the *class-2*, denoted by $G \in C_f 2$. In this paper, we show that the corona product of C_n with S_m is in $C_f 1$. Besides that, we characterize the corona product of C_n with either W_n or K_n based on *f*-coloring.

Keywords: corona product, *f*-chromatic index, *f*-coloring, graph **PACS:** 02.10.Ox

INTRODUCTION

Throughout this paper, G(V,E) is a simple and finite graph with the vertex set V(G) and the edge set E(G). We refer to [6] for undefined terms. Let f be a function from V(G) to a subset of the positive integers. An fcoloring of G is a coloring of edges such that each vertex v has at most f(v) edges colored with a same color. The minimum number of colors needed in the f-coloring of Gis called an f-chromatic index of G, denoted by $\chi'_{\epsilon}(G)$.

A problem in the *f*-coloring is how to determine $\chi'_f(G)$ of a given graph *G*. It arises in many applications, including the network design problem, the scheduling problem, and the file transfer problem in a computer network [4]. The file transfer problem in a computer network is modeled as follows. Each computer is represented by a vertex and every two computers in the file transfer process is represented by an edge. Each computer *v* has a limit number f(v) of communication ports. If we assume that the transfer time is constant for every file, we can use an *f*-coloring to manage transferring all files along the minimum time needed.

Let d(v) denote the degree of $v \in V$. By extending the well–known theorem of Vizing (1965) to *f*-colorings, Hakimi and Kariv [5] showed that

$$\Delta_f(G) \le \chi'_f(G) \le \Delta_f(G) + 1,$$

¹ This research is supported by ITB Research Grant *Program Riset dan Inovasi KK*.

where

$$\Delta_f(G) = \max_{v \in V(G)} \left\{ \left\lceil \frac{d(v)}{f(v)} \right\rceil \right\}.$$

According to [5], *G* is called in the *class-1*, denoted by $G \in C_f 1$, if $\chi'_f(G) = \Delta_f(G)$; otherwise *G* is called in the *class-2*, denoted by $G \in C_f 2$. Holyer [7] proved that the edge-coloring problem is an NP-complete. It is reduced from the 3SAT problem. Consequently, the *f*-coloring problem is an NP-complete problem.

Hakimi and Kariv [5] showed that any bipartite graph is in $C_f 1$. Moreover, for any graph, they showed that, if f(v) is even for each $v \in G$, then G is in $C_f 1$. Yu et al. [8] gave sufficient conditions for fans to be in $C_f 1$. Zhang and Liu [10] found the *f*-chromatic index for complete graphs and gave a classification of complete graphs on *f*-coloring. Let,

$$V_0^*(G) = \left\{ v : \frac{d(v)}{f(v)} = \Delta_f(G), v \in V(G) \right\},$$

and

$$V^*(G) = \left\{ v : \left\lceil \frac{d(v)}{f(v)} \right\rceil = \Delta_f(G), v \in V(G) \right\}.$$

Zhang and Liu in [9] gave some sufficient conditions for a graph to be in $C_f 1$ as follows.

Theorem 1. Let G be a graph. If the subgraph induced by $V_0^*(G)$ is forest, then $G \in C_f 1$.

The 5th International Conference on Research and Education in Mathematics AIP Conf. Proc. 1450, 155-158 (2012); doi: 10.1063/1.4724133 © 2012 American Institute of Physics 978-0-7354-1049-7/\$30.00 **Theorem 2.** Let G be a graph. If $d(v^*)$ is not devided by $f(v^*)$ for every $v^* \in V^*(G)$, then $G \in C_f 1$.

Two above theorems will be used in the part of the proof of our results. In 2008, Zhang *et al.* [11] gave a sufficient condition for a regular graph to be in $C_f 2$. In [1], we generalized the result as stated in Theorem 3.

Theorem 3. Let G = (V, E) be a graph and let $g = gcd(d(v) : v \in V)$. Let $f : V \to \mathbb{N}$ be defined as f(v) = d(v)/k for each $v \in V$, where k divides g. If f(v) is odd for an odd number of vertices, then $G \in C_f 2$.

Let *G* and *H* be two graphs with *n* and *m* vertices, respectively. The *corona product* of a graph *G* with a graph *H*, denoted by $G \odot H$, is a graph obtained by taking one copy of an *n*-vertex *G* and *n* copies of *H*, namely $H_1, H_2, ..., H_n$, and then for i = 1, 2, ..., n, joining the *i*-th vertex of *G* to every vertex of H_i . Here *G* is called the *center* of $G \odot H$, denoted by G^1 , and H_i is called the *outer* of $G \odot H$, denoted by H_i^2 .

Let C_n be a cycle on *n* vertices, S_n be a star on n + 1 vertices, W_n be a wheel on n + 1 vertices, and K_n be a complete graph on *n* vertices. We showed in [3] that the corona product of a cycle with either the complement of a complete graph, or a path, or another cycle is in $C_f 1$. In [2] we gave a characterization of some graphs containing wheels, namely the corona product of either the complement of a complete graph, or a path, or a path, or a star with a cycle, based on *f*-coloring.

As well-known, the corona product is not commutative. Hence, in this paper, we are interested in considering the corona product of C_n with S_m . In Theorem 4, we show that it is in $C_f 1$ for any f. Besides that, we consider the corona product of C_n with either W_m or K_m . By using Theorem 3, we give a characterization of the corona product of C_n with W_m based on its f-chromatic index as we state in Theorem 5. In Theorem 6, we give a necessary and sufficient condition of the corona product of C_n with K_m to be in $C_f 2$.

MAIN RESULTS

Let $G = C_n \odot S_m$ be the corona product of a cycle with a star. We label all vertices of C_n^1 by $v_1, v_2, ..., v_n$, respectively. Next, for i = 1, 2, ..., n and j = 1, 2, ..., m, we label the center of *i*-th star S_m^2 by u_i and the other vertices of the *i*-th star S_m^2 by $w_{i,j}$. In the following theorem, we show that the corona product of a cycle with a star is in $C_f 1$ for any f.

Theorem 4. Let $n \ge 3$, $m \ge 3$, $G = C_n \odot S_m$, and f be a function from V(G) to a subset of positive integers, then $G \in C_f 1$.

Proof.

If $\Delta_f(G) = 1$, then we can define an *f*-coloring of *G* with one color. For $\Delta_f(G) \ge 2$, we divide the proof into two cases as follows.

Case 1. $\Delta_f(G) = 2$

For i = 1, 2, ..., n and j = 1, 2, ..., m, we color all edges $u_i v_i$ by c_1 , $v_i w_{i,j}$ by c_1 and c_2 alternately, and $w_{i,j} u_i$ by c_2 and c_1 alternately such that $w_{i,j}$ is incident with two different colored edges. Next, we color all edges in $E(C_n^1)$ by c_2 .

Case 2. $\Delta_f(G) \geq 3$

For i = 1, 2, ..., n and j = 1, 2, ..., m, we color all edges $u_i w_{i,j}$ by $c_1, c_2, ..., c_{\Delta_f}$ alternately, $v_i w_{i,j}$ by $c_2, c_3, ..., c_{\Delta_f}, c_1$ alternately, and $u_i v_i$ by c_{Δ_f} . Next, we color all edges in $E(C_n^1)$ by c_1 and c_2 alternately. Finally, for odd n and for i = 1, 2, ..., n, we have to replace the color on $v_i w_{i,m}$ by c_2 .

So, all edges of *G* have been colored by using $\Delta_f(G)$ colors and every vertex $v \in V(G)$ has at most f(v) edges with a same color.

Let $G = C_n \odot W_m$ be the corona product of a cycle with a wheel. We label all vertices of $V(C_n^1)$ by $v_1, v_2, ..., v_n$, respectively. Next, for i = 1, 2, ..., n and j = 1, 2, ..., m, we label the center of *i*-th wheel W_m^2 by u_i and the other vertices of the *i*-th wheel W_m^2 by $w_{i,j}$. In the following theorem, we give a necessary and sufficient condition of the corona product of C_n with W_m to be in $C_f 2$.

Theorem 5. Let $n \ge 3$, $m \ge 3$, and $G = C_n \odot W_m$. If *n* is odd and

$$f(v) = \begin{cases} \frac{m+3}{2}, & v \in V(C_n^1) \\ \frac{m+1}{2}, & v = u_i, \\ 2, & v = w_{i,j}, \end{cases}$$

then $G \in C_f 2$. Otherwise, $G \in C_f 1$.

Proof.

If the premise of the theorem is fulfilled, then $\Delta_f(G) = 2$ and d(v) = 2f(v) for every $v \in V(G)$. Meanwhile, there exists odd f(v) for odd number of vertices $v \in V(G)$. Hence, by Theorem 3, then $G \in C_f 2$.

If the premise of the theorem is not fulfilled, we divide the proof into two cases as follows.

Case 1. For even n

If f(v) is as given above, we can construct an f-coloring by using Δ_f colors as follows. For i = 1, 2, ..., n and j = 1, 2, ..., m, we color all edges $u_i w_{i,j}$ by $c_1, c_2, ..., c_{\Delta_f}$ alternately and $v_i w_{i,j}$ by $c_{\Delta_f}, c_1, ..., c_{\Delta_{f-1}}$ alternately, and $u_i v_i$ by c_{Δ_f} . Next, for i = 1, 2, ..., n and j = 1, 2, ..., m - 1, we color all edges $w_{i,j} w_{i,j+1}$ and $w_{i,m} w_{i,1}$ by $c_{\Delta_f-1}, c_{\Delta_f},$ $c_1, ..., c_{\Delta_f-2}$ alternately. Finally, for i = 1, 2, ..., n - 1, we color all edges $v_i v_{i+1}$ and $v_n v_1$ by c_1 and c_2 alternately. Meanwhile, if f(v) does not satisfy the above conditional, then it becomes more easy to construct an f-coloring by using Δ_f colors.

Case 2. For odd n

For i = 1, 2, ..., n and j = 1, 2, ..., m, we color all edges $u_i w_{i,j}$ by $c_1, c_2, ..., c_{\Delta_f}$ alternately, and $u_i v_i$ and $v_i w_{i,1}$ by c_1 . For i = 2, 3, ..., n and j = 1, 2, ..., m, we color $v_i w_{i,j}$ by $c_{\Delta_f-1}, c_{\Delta_f}, c_1, ..., c_{\Delta_f-2}$ alternately. Next, we color all edges $v_i v_{i+1}$ and $v_n v_1$ by c_{Δ_f} . Finally, for i = 1, 2, ..., n and j = 1, 2, ..., n and j = 1, 2, ..., n and $w_{i,j} v_{i,j+1}$ and $w_{i,m} w_{i,1}$ by $c_{\Delta_f}, c_1, ..., c_{\Delta_f-1}$ alternately.

Hence,
$$G \in C_f 1$$
.

In Theorem 6, we give a characterization of the corona product of C_n with K_m based on *f*-chromatic index. All vertices of C_n^1 are labeled by $v_1, v_2, ..., v_n$, and for i = 1, 2, ..., n and j = 1, 2, ..., m, all vertices of *i*-th K_m^2 are labeled by $w_{i,j}$. In the following theorem, we characterize the corona product of a cycle with a complete graph based on its *f*-chromatic index.

Theorem 6. Let $n \ge 3$, $m \ge 2$, and $G = C_n \odot K_m$. If *n* is odd, *m* is even, and

$$f(v) = \begin{cases} \frac{m}{2} + 1, & v \in V(C_n^1), \\ \frac{m}{2}, & v \in V(K_m^2), \end{cases}$$

then $G \in C_f 2$. Otherwise, $G \in C_f 1$.

Proof.

For i = 1, 2, ..., n, let L_i be a subgraph of G which is induced by all vertices of *i*-th K_m^2 and v_i .

If the premise of the theorem is fulfilled, we have $\Delta_f(G) = 2$ and d(v) = 2f(v) for every $v \in V(G)$. Meanwhile, there exists odd f(v) for odd number of vertices $v \in V(G)$. Hence, by Theorem 3, we get $G \in C_f 2$.

If the premise of the theorem is not fulfilled, we can construct an *f*-coloring on *G* by using $\Delta_f(G)$ colors. We divide the proof into two cases as follows.

Case 1. $\Delta_f(G) = m$

If f(v) = 1 for every $v \in V(G) \setminus V(C_n^1)$, then we divide proof into two subcases.

Subcase 1.1. For odd m

Since every L_i is a complete graph with even order, then L_i can be decomposed into m edge–disjoint matchings with (m + 1)/2 edges each. Give a different color to each class. Next, we color all edges in $E(C_n^1)$ by using two different colors alternately. So, all edges of G have been colored by using $\Delta_f(G)$ colors and every vertex $v \in V(G)$ has at most f(v) edges with a same color.

Subcase 1.2. For even m

In this case, we color all edges in $E(C_n^1)$ by using one color, namely *t*. Next, for i = 1, 2, ..., n and j = 1, 2, ..., m, we color all edges which joining v_i with every vertex $w_{i,j}$ by using m/2 colors (except *t*) such that the number of colors on edges which is incident with v_i is equal to 2 for every color. Hence, every $L_i \setminus \{v_i\}$ can be decomposed into *m* edge-disjoint matchings. We color each *matching* by using one class of color such that the number of colors on edges which is incident with $w_{i,j}$ is equal to 1 for every color. So, we have constructed an *f*-coloring on *G* by using Δ_f colors.

If there exist $f(v) \neq 1$ for some vertices $v \in V(G) \setminus V(C_n^1)$, then we can construct an *f*-coloring easier than both of two subcases above.

Case 2. $\Delta_f(G) < m$

Every subgraph K_m^2 contains a complete graph K_{r+1} with $r = max\{s \le m : s \text{ is divided by } 2\Delta_f\}$. Based on Lucas Theorem [6], a complete graph with odd order can be decomposed into some edge-disjoint Hamiltonian cycles. Hence, we decompose every K_{r+1} into r/2 edge-disjoint Hamiltonian cycles. Next, we partition this Hamiltonian cycles into Δ_f classes with cardinality of each is r/Δ_f . Give a different color to each class. We obtain an f-coloring on every K_{r+1} by using Δ_f colors such that every vertex is joining with r/Δ_f edges for every color.

If $m \neq 0 \pmod{r}$, then some edges in $E(K_m^2)$ are not colored yet. For i = 1, 2, ..., n, let $W_{i,j} = \{w_{i,m-r+1}, ..., w_{i,m-r+\Delta_f}\}$ be a subset of vertices of $K_m^2 \setminus K_{r+1}$ which are incident with edges in K_{r+1} . Next, for i = 1, 2, ..., n, we partition vertices of *i*-th K_{r+1} into Δ_f subsets, namely $U_{i,1}, ..., U_{i,\Delta_f}$. For i = 1, 2, ..., n and $j = 1, 2, ..., \Delta_f$, we color the edges which is joining every vertex $w_{i,m-r+j} \in W_{i,j}$ with $U_{i,l}$ with color $(j+l) \pmod{\Delta_f}$. In case $(j+l) \equiv 0 \pmod{\Delta_f}$, we color the edges by Δ_f . It implies every vertex in $U_{i,l} \cup W_{i,j}$ has at most $(m+1)/\Delta_f$ edges with a same color. Next, for i = 1, 2, ..., n and $j = 1, 2, ..., \Delta_f$, we can color all edges which is joining vertices in $W_{i,j}$ such that the number of colors on edges which are incident with $w_{i,m-r+j}$ at most $f(w_{i,m-r+j})$.

If $m \equiv 0 \pmod{r}$, then $L_i \setminus \{v_i\}$ $(1 \le i \le n)$ is a complete graph with even order. This means that the L_i can be decomposed into m/2 edge-disjoint Hamiltonian cycles. Next, we recollect the Hamiltonian cycles into Δ_f classes and for every class, we color all edges by using different colors. Finally, we color all edges in $E(C_n^1)$ by using a color such that every vertex $v \in V(C_n^1)$ has at most f(v) edges with a same color.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Oriol Serra (Universitat Politècnica de Catalunya, Barcelona, Spain) for many helpful suggestions and discussions.

REFERENCES

- Adiwijaya, A.N.M. Salman, O. Serra, D. Suprijanto, E.T. Baskoro, "Some graphs in C_f2 based on f-coloring", submitted.
- Adiwijaya, A.N.M. Salman, D. Suprijanto, E.T. Baskoro, "A classification of some graphs containing wheels based on *f*-coloring", *East West Journal of Mathematics* Special Volume (2010) pp. 200-207.
- Adiwijaya, A.N.M. Salman, D. Suprijanto, E.T. Baskoro, "On the *f*-colorings of the corona product of a cycle with some graphs", *Journal of Combinatorial Mathematics and Combinatorial Computing* **71** (2009) 235-241.
- E. G. Coffman, M.R. Garey, D.S. Johnson, A.S. LaPaugh, "Scheduling file transfers, *SIAM Journal of Computation* 14:3 (1985), 744-780.
- S.L. Hakimi, O. Kariv, "A generalization of edge-coloring in graphs", *Journal of Graph Theory* 10 (1986) 139-154.
- N. Hartsfield, G. Ringel, *Pearls in Graph Theory : A* Comprehensive Introduction, Academic Press (1994), London.
- I. Holyer, "The NP-completness of edge-coloring", SIAM Journal of Computation 10:4 (1981) 718 - 720.
- J. Yu, L. Han, G. Liu, "Some result on the classification for f-colored graphs", *Proceeding ISORA* (2006).
- X. Zhang, G. Liu, "Some sufficient conditions for a graf to be C_f1", Applied Mathematics Letters 19 (2006) 38-44.
- X. Zhang, G. Liu, "The classification of K_n on fcolorings", *Journal of Applied Mathematics and Computing* **19:1-2** (2006) 127-133.
- X. Zhang, J. Wang, G. Liu, "The classification of regular graphs on *f*-colorings", Ars Combinatoria 86 (2008) 273-280.