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Abstract. An f-coloring of graph G(V, E) is a generalized edge-coloring such that every vertex v in V has at most f(v) edges
colored with a same color. There are many applications of the f-coloring, for instance we can use it in order to solve some
scheduling problems and some network design problems. The minimum number of colors needed to f-color G is called an
the f-chromatic index of G, denoted by X;(G) Any graph G has f-chromatic index equal to As(G) or A¢(G) + 1, where

Ap(G) = maxyey{[d(v)/f(v)]}. G is called in the class-1, denoted by G € Cy1, if x}(G) = Ay(G); otherwise G is called in

the class-2, denoted by G € Cy2. In this paper, we show that the corona product of C, with Sy, is in Crl. Besides that, we
characterize the corona product of C,, with either W, or K, based on f-coloring.
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INTRODUCTION

Throughout this paper, G(V,E) is a simple and finite
graph with the vertex set V(G) and the edge set E(G).
We refer to [6] for undefined terms. Let f be a function
from V(G) to a subset of the positive integers. An f-
coloring of G is a coloring of edges such that each vertex
v has at most f(v) edges colored with a same color. The
minimum number of colors needed in the f-coloring of G
is called an f-chromatic index of G, denoted by x1(G).

A problem in the f-coloring is how to determine
x}(G) of a given graph G. It arises in many applications,
including the network design problem, the scheduling
problem, and the file transfer problem in a computer net-
work [4]. The file transfer problem in a computer net-
work is modeled as follows. Each computer is repre-
sented by a vertex and every two computers in the file
transfer process is represented by an edge. Each com-
puter v has a limit number f(v) of communication ports.
If we assume that the transfer time is constant for every
file, we can use an f-coloring to manage transferring all
files along the minimum time needed.

Let d(v) denote the degree of v € V. By extending
the well-known theorem of Vizing (1965) to f-colorings,
Hakimi and Kariv [5] showed that

Ar(G) < x5 (G) <Af(G) +1,

! This research is supported by ITB Research Grant Program Riset dan
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where
Af(G) = ma

Usel)

v || 7 wmJ

According to [5], G is called in the class-1, denoted by
G € Crl, if x3(G) = A¢(G); otherwise G is called in the
class-2, denoted by G € Cr2. Holyer [7] proved that the
edge-coloring problem is an NP-complete. It is reduced
from the 3SAT problem. Consequently, the f-coloring
problem is an NP-complete problem.

Hakimi and Kariv [5] showed that any bipartite graph
is in Crl. Moreover, for any graph, they showed that, if
f(v) is even for each v € G, then Gisin C1. Yu et al. [8]
gave sufficient conditions for fans to be in Cy1. Zhang
and Liu [10] found the f-chromatic index for complete
graphs and gave a classification of complete graphs on
f-coloring. Let,

V(6 ={v: 3 =a(6Lv V() .
and
V*(G) = {v: [%ﬂ — A/(G),ve v(c)}.

Zhang and Liu in [9] gave some sufficient conditions for
a graph to be in Cy1 as follows.

Theorem 1. Let G be a graph. If the subgraph induced
by Vo*(G) is forest, then G € Cy1.
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Theorem 2. Let G be a graph. If d(v*) is not devided by
f(v*) for every v € V*(G), then G € Cyl.

Two above theorems will be used in the part of the proof
of our results. In 2008, Zhang et al. [11] gave a sufficient
condition for a regular graph to be in C;2. In [1], we
generalized the result as stated in Theorem 3.

Theorem 3. Let G = (V,E) be a graph and let g =
ged(d(v): ve V). Let f:V — N be defined as f(v) =
d(v)/k for each v € V, where k divides g. If f(v) is odd
for an odd number of vertices, then G € Cy2.

Let G and H be two graphs with n and m vertices,
respectively. The corona product of a graph G with a
graph H, denoted by GO H, is a graph obtained by taking
one copy of an n-vertex G and n copies of H, namely
Hi, H,, ..., H,, and then for i = 1,2,...,n, joining the
i-th vertex of G to every vertex of H;. Here G is called
the center of G ® H, denoted by G', and H; is called the
outer of G ® H, denoted by Hl»z.

Let C, be a cycle on n vertices, S,, be a star on n+ 1

vertices, W,, be a wheel on n+ 1 vertices, and K, be a
complete graph on 7 vertices. We showed in [3] that the
corona product of a cycle with either the complement
of a complete graph, or a path, or another cycle is in
Crl. In [2] we gave a characterization of some graphs
containing wheels, namely the corona product of either
the complement of a complete graph, or a path, or a star
with a cycle, based on f-coloring.
As well-known, the corona product is not commutative.
Hence, in this paper, we are interested in considering the
corona product of C, with S,,. In Theorem 4, we show
that it is in Cy1 for any f. Besides that, we consider the
corona product of C, with either W,, or K,,. By using
Theorem 3, we give a characterization of the corona
product of C,, with W,, based on its f-chromatic index
as we state in Theorem 5. In Theorem 6, we give a
necessary and sufficient condition of the corona product
of C, with K, to be in Cy2.

MAIN RESULTS

Let G = C, © S, be the corona product of a cycle with
a star. We label all vertices of C,l by vi,v2,..., v, respec-
tively. Next, for i = 1,2,...,n and j = 1,2,...,m, we la-
bel the center of i-th star Sﬁ by u; and the other vertices
of the i-th star S, by w; ;. In the following theorem, we
show that the corona product of a cycle with a star is in
Cy1 for any f.

Theorem 4. Letn >3, m >3, G=C,0S,,, and f be a
Sunction from V (G) to a subset of positive integers, then
Ge Cfl.

156

Proof.

If A¢(G) =1, then we can define an f-coloring of G
with one color. For A¢(G) > 2, we divide the proof into
two cases as follows.

Case 1. A¢(G) =2

Fori=1,2,...,n and j = 1,2,...,m, we color all edges
u;v; by c1, viw;; by c| and ¢, alternately, and w; ju;
by ¢> and c; alternately such that w; ; is incident with
two different colored edges. Next, we color all edges in
E(C!) by c3.

Case 2. A((G) >3

For i = 1,2,....,n and j = 1,2,...,m, we color all
edges u;w;; by C1,€2,.-,CAy alternately, v;w;; by
€2,€35-+,CA45C1 alternately, and u;v; by CA- Next, we
color all edges in E(C!) by ¢; and c; alternately. Finally,
for odd n and for i = 1,2,...,n, we have to replace the
color on v;w; ,, by c».

So, all edges of G have been colored by using As(G)
colors and every vertex v € V(G) has at most f(v) edges
with a same color. |

Let G = C,, ©W,, be the corona product of a cycle with
a wheel. We label all vertices of V(C}) by vi,va,..., Vs,
respectively. Next, for i = 1,2,...,n and j = 1,2,...,m,
we label the center of i-th wheel W2 by u; and the other
vertices of the i-th wheel W2 by w; ;. In the following
theorem, we give a necessary and sufficient condition of

the corona product of C, with W, to be in Cy2.

Theorem 5. Letn >3, m > 3, and G = C,0OW,,.
If nis odd and

mi3 vev(ch),
f(V) = m;—l ) V= Uu;,
27 V=Wij

then G € Cy2. Otherwise, G € Crl.
Proof.

If the premise of the theorem is fulfilled, then A¢(G) =2
and d(v) = 2f(v) for every v € V(G). Meanwhile, there
exists odd f(v) for odd number of vertices v € V(G).
Hence, by Theorem 3, then G € Cy2.

If the premise of the theorem is not fulfilled, we divide
the proof into two cases as follows.

Case 1. For even n



If f(v) is as given above, we can construct an f-coloring
by using Ay colors as follows. For i = 1,2,...,n and
Jj=1,2,...,m, we color all edges u;wij by ci,c2,...,ca,
alternately and v;w; ; by ca 1€l ey CAF—1 alternately, and
u;v; by CA- Next, fori=1,2,...,nand j =1,2,....m—1,
we color all edges w; jw; j+1 and w; ,,w; 1 by CAf—15 CAp»
Clyeee CAF-2 alternately. Finally, for i = 1,2,....n — 1,
we color all edges v;v;11 and v,v; by ¢ and ¢, alter-
nately. Meanwhile, if f(v) does not satisfy the above
conditional, then it becomes more easy to construct an
f-coloring by using Ay colors.

Case 2. For odd n

Fori=1,2,...nand j = 1,2,...,m, we color all edges
uw; j by cy,c2, s CA alternately, and u;v; and v;w; | by
ci.Fori=23,...,nand j=1,2,...,m, we color v;w; ;
by CAf—15 CA;,Cly ey CAF—2 alternately. Next, we color all
edges v;v;+1 and v,v; by CA- Finally, for i = 1,2,...,n
and j = 1,2,...m — 1, we color edge w;;v; ;i1 and
Wi mWi1 by CAf>Clyeees CAF—1 alternately.

Hence, G € Cyl. O

In Theorem 6, we give a characterization of the corona
product of C, with K,, based on f-chromatic index.
All vertices of C,i are labeled by vq,vy,...,v,, and for
i=1,2,...,nand j =1,2,....m, all vertices of i-th anq are
labeled by w; ;. In the following theorem, we characterize
the corona product of a cycle with a complete graph
based on its f-chromatic index.

Theorem 6. Letn >3, m> 2, and G =C, ® K,
If nis odd, m is even, and

)=

then G € Cy2. Otherwise, G € Crl.

241, veV(C),
o veV(ky),

Proof.

For i = 1,2,...,n, let L; be a subgraph of G which is
induced by all vertices of i-th K2 and v;.

If the premise of the theorem is fulfilled, we have
A¢(G) =2 and d(v) = 2f(v) for every v € V(G). Mean-
while, there exists odd f(v) for odd number of vertices
v € V(G). Hence, by Theorem 3, we get G € Cf2.

If the premise of the theorem is not fulfilled, we can
construct an f-coloring on G by using A¢(G) colors. We
divide the proof into two cases as follows.

Case 1.Af(G)=m
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If f(v) = 1 for every v € V(G) \ V(C}), then we divide
proof into two subcases.

Subcase 1.1. For odd m

Since every L; is a complete graph with even order, then
L; can be decomposed into m edge—disjoint matchings
with (m+ 1)/2 edges each. Give a different color to
each class. Next, we color all edges in E(C!) by using
two different colors alternately. So, all edges of G have
been colored by using Ay(G) colors and every vertex
v € V(G) has at most f(v) edges with a same color.

Subcase 1.2. For even m

In this case, we color all edges in E(C)) by using one
color, namely . Next, fori =1,2,...,nand j=1,2,...,m,
we color all edges which joining v; with every vertex w; ;
by using m/2 colors (except ¢) such that the number of
colors on edges which is incident with v; is equal to 2 for
every color. Hence, every L; \ {v;} can be decomposed
into m edge-disjoint matchings. We color each matching
by using one class of color such that the number of
colors on edges which is incident with w; ; is equal to 1
for every color. So, we have constructed an f-coloring
on G by using A¢ colors.

If there exist f(v) # 1 for some vertices v €
V(G)\ V(C}), then we can construct an f-coloring
easier than both of two subcases above.

Case 2. Af(G) <m

Every subgraph K2 contains a complete graph K, | with
r =max{s < m: s is divided by 2A,}. Based on Lucas
Theorem [6], a complete graph with odd order can be
decomposed into some edge-disjoint Hamiltonian cycles.
Hence, we decompose every K, into r/2 edge-disjoint
Hamiltonian cycles. Next, we partition this Hamiltonian
cycles into Ay classes with cardinality of each is r/Ay.
Give a different color to each class. We obtain an f-
coloring on every K, | by using A colors such that every
vertex is joining with /Ay edges for every color.

If m # 0 (mod r), then some edges in E(K2)
are not colored yet. For i = 1,2,...,n, let W;; =
{Wim—rsis-- ,wi_r,,,,rJrAf} be a subset of vertices of
anq\KHl which are incident with edges in K,;;. Next,
for i = 1,2,...,n, we partition vertices of i-th K, into
Ay subsets, namely Uit Uia,- Fori=1,2,...,n and
j=12,..,As, we color the edges which is joining
every vertex wi,—r4; € Wi j with U;; with color (j+1)
(mod Ay). In case (j+1) =0 (mod Af), we color the
edges by Ay. It implies every vertex in U;; UW; ; has
at most (m+1)/As edges with a same color. Next, for



i=1,2,..,nand j=1,2,...,Ar, we can color all edges
which is joining vertices in W; ; such that the number of
colors on edges which are incident with w; ;, 4 ; at most
f(wi,mfrfi)'

If m=0 (mod r), then L; \ {v;} (1 <i<n)isa
complete graph with even order. This means that the L;
can be decomposed into m/2 edge-disjoint Hamiltonian
cycles. Next, we recollect the Hamiltonian cycles into Ay
classes and for every class, we color all edges by using
different colors. Finally, we color all edges in E(C}) by
using a color such that every vertex v € V(C}) has at most
f(v) edges with a same color. O
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