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Abstract

Let G = (V(G), E(G)) be a simple graph and f be a function from
to a subset of positive integers. An f-coloring of G is a generalized e
coloring such that every vertex v € V has at most f(v) edges color
with a same color. The minimum number of colors needed to define
[f-coloring of G is called an f-chromatic index of G, denoted by x’f(G).
problem in the f-coloring is how to determine X'f(G) of a given graph
Based on the f-chromatic index, a graph G can be either in the Cyl
Cy2. In this paper, we consider a graph containing wheels, especially the
corona product of either the complement of a complete graph, or a paf
or a star with a cycle. We give a classification of these graphs based
[f-colorings.

1. Introduction

In this paper. we deal with simple graphs which are finite undirecte
without loops or multiple edges. Let G = (V(G), E(G)) be a graph

Keywords: corona product, f-chromatic index, f-coloring.
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V(G) and the edge set E(G). Let f be a function from V(G) to a
f positive integer. An f-coloring of G is a coloring of edges such that
tex v has at most f(v) edges colored with a same color. The minimum
of colors needed to define an f-coloring of G is called an f-chromatic
- denoted by x/(G).
oblem in the f-coloring is how to determine x’f (G) of a given graph G.
many applications, including network design problem, the schedul-
blems, and file transfer problems in a computer network [4]. The file
problem in a computer network is modeled as follows. Each computer
ted by a vertex and every file transfer process between two com-
represented by an edge. Each computer v has a limit number f(v)
nication ports. If we assume that the transfer time is constant for
le. we can use an f-coloring to manage transferring all files along the
m time needed.

d(v)‘t }

Af(G) = max ; 1
) LEV(m{ {f(v) ' o
(v) is the degree of v.

d Kariv [5] showed that

Ap(G) < x5 (G) < A5 (G) + 1. (2)

in the class-1, denoted by G € Cyl, if x4 (G) = A(G); otherwise G
the class-2. denoted by G € C;2. Holyer [6] proved that the edge-
roblem is an NP-complete. It is reduced from the 3SAT problem.
tly. the f-coloring problem is an NP-complete problem.

1and Kariv [5] showed that any bipartite graph is in Cy1. In [2],
that any helm graphs, any gear graphs and some friendship graphs
. It G is a graph with even f(v) for each v€ V(G), then G is in
ef al. [8] gave sufficient conditions for fans and wheels to be in C/1.
id Liu [10] found the f-chromatic index for complete graphs and gave
tion of complete graphs based on f-colorings. In 2008, Zhang et al.
sented a classification of regular graphs based on f-coloring.

e ={v1 82 = a@)ve Ve . 3)
e ={o1 | 33] = as@rvevia). (1)

nd Liu in [9] gave some sufficient conditions for a graph to be in Crl
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Theorem 1.1 [9] Let G be a graph. If the subgraph induced by Vy
then G € Cyl.

Theorem 1.2 [9] Let G be a graph. If d(v*) is not devided by f(u'
v* € V*(G), then G € Cyl.

We use [a, b] instead of {z € Nja < z < b}. Let G and H be
with n and m vertices, respectively. The corona product of G with
by G © H, is a graph obtained by taking one copy of G and n e
namely Hy, H,, ..., Hy, and then for i € [1,n], joining the i-th
to every vertex of H;. Here G is called the center of G ® H and
the outer of G © H. In this paper, a vertex set and an edge set
of G ® H is denoted by V(G) and E(G), respectively. A vertex
edge set in the outer of G ©® H is denoted by V(H) and E(H), r
We know that the corona product of any graph with a cycle produ
containing wheels. We have shown that the corona product of a
either the complement of a complete graph, or a path, or a cycle i
and the corona product of a complete graph with a cycle is in Cyl

In this paper, we consider some other graphs containing wheels
corona product of either the complement of a complete graph, o
star with a cycle. In Theorem 2.1, we give a classification of the coron
of the complement of a complete graph with a cycle. In [3], we |
that the corona product of a cycle with a path is in Cyl. It is well-
the corona product of any two graphs is not commutative. Hence, i
to look for a sufficient condition of the corona product of a path
to be in Crl. In Theorem 2.2, we give a classification of the corona
a path with a cycle. Moreover, in Theorem 2.3. we give a classific
corona product of a star with a cycle.

2. Main Results

In this paper. we associate positive integers with colors. Let F be an |
of G. Let FF~!(i) denotes the'set of edges of G that receive color i und
F (i) denote the set of edges of G which is incident with the ver
receive color 7 under F'.

Let W, = K| ® C,, be a wheel on m + 1 vertices. Let E, = Bl
Ey be a set of edges which are incident with V(K). Let C be an
of W, such that for 7 € [1,k], |C; (i )ﬁ Eo| =1 for every v € V(Cm
when k = 2 and |Ey| is odd, there is one and only one xertex v € Wl
[Coli )ﬂb(,[ =2) and a1 > as > ... 2 a; where a; = |C71(i) N Ey.
Let b, =

(i) N E1], we have two following conditions:
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L If m is even and a; = 2 — ¢; for some ¢; € [0, (T —1)], then b; < 28,

2.1fmis odd and a; = |7 | —t; for some t; € [0, (| 2] —1)], then b; < 2¢,+1.

fowill use the f-coloring C to prove Theorem 2.1, Theorem 2.3, and Theorem

In the Theorem 2.1, we give a classification of the corona product of the
mplement of a complete graph (K¢) with a cycle based on f-colorings.

eorem 2.1 Letn>1, m >3 and G = K5 © C,,.
L v € V(Cp),
B 4=,

3

either m = 5 or m = 8 and flv) =
n G € C;2. Otherwise, G € Cyl1.
of.

bn = 1. If / tulfills the premise of the theorem, then Af(G) = 3. If
G) = 1, it is clear that we can construct an f-coloring of G with one color.
ot Ar(G) > 2, we divide the proof into three cases as follows.

id [C,,' ()] < [%] for the vertex w € V(K;). Hence, G € Cy1.

2. A (G)=3
0 this case, we divide the proof into three subcases.

e can construct an f-coloring C by using 3 colors such that |C(i)| = 1 for
very vertex v € V(Chy,) and |C (i) < r+1 for the vertex w € V(). Hence.
Cfl.

ubcase 2.2 For either m = 5 or m = 8 and f fulfills the premise of the
m. We assume that there exists an f-coloring C' of G by using 3 colors,
ave the conditions as follows.

m =5, let hy, ho, hy be a monotone non-increasing sequence of the number
ges in Ey with a same color such that h; > hy > hs. Let t, € [0, 1], since
hy 4+ hsy = 5, we get t; +t3 = 0. Let g1. go. g3 be a number of edges in F;
asame color. respectively. Since g + g2 + g3 = 5. we get g3 > 3. It means
f(w) must be 3 for w € V(K;). We get a contradiction. It is impossible
struct an f-coloring by using 3 colors. Hence, G € Cy2.

=8.let t; € [0,3]. By using a similar technique. we have h+hy+hy = 8.
lies t) + to = hs. Since g1 + g2 + g3 = 8. we get 2h3 + g3 > 8 where
2. It implies hy > 4. It means that f(w) must be 1 for w € V(K)).



204 A classification of some graphs containing wheels based on f-color

We get a contradiction. It is impossible to construct an f-coloring by us
colors. Hence. G € Cj2. :

Subcase 2.3 For either m = 5 or m = 8 and there exists u € V(cC
flu) # 1orwe V(Ky) with f(w) # [2], we can color all edges of G by}
the similar technique in Subcase 2.1 by using 3 colors such that C.
Cl(i) # [2] forsome i € [1,3],u € V(Cp,) and w € V(Ky). Hence Gel

Case 3. A¢(G) > 4 i
We obtain V* C V(Ky). If Vi* = V(K}), by Theorem 1.1, we have G « ‘:
Otherwise, by Theorem 1.2, we have G € C1. 1

Let n > 2. Since, K © Cy, is the n-copies of K| ® C,,,, we have a
sion that if f fulfills the premise of the theorem, then G € Cr2. Ot
Ge Cfl 4

Let G = P, ® Cy, be the corona product of a path on n vertices
cycle on m vertices. Thus, we have the following theorem: 4

Theorem 2.2 Let n >2, m >3, and G = P, © C,,.

o [, for vie V(Cn),
lfm =5 and f(v) = [5], forve V(B,) andd{w) =m+1
then G € Cy2. Otherwise, G € Cy1.

Proof.

We can color all edges of wheels by using the similar technique for every
in Theorem 2.1. Next, we color every edge of the path in three followin

Case 1 Af(G) =2
We color all edges of the path by 1. Hence, G € Crl.

Case 2 Af(G) =3 N\
We divide the proof into two subcases.

Subcase 1 For m = 5 and f fulfills the premise of the theorem, by usi in
same reason in the proof of Theorem 2.1 subcase 2.2. we can not constr
f-coloring by using 3 colors. Hence, G € Cj2.

Subcase 2 For m # 5 or f(v) does rfot fulfill the premise of the theor r
color all edges of the path by 1.2 alternately. But, when m = 4 or m
color all edges of the path by 1. Hence. G € Cy1. ;
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3Af(G) >4

btain V* C V(P,). If there exists v € V(P,) such that v € Vs

heorem 1.1, we have G € Crl. Otherwise, by Theorem 1.2, we have
G O

t Sn be a star on n + 1 vertices. In Theorem 2.3, we give a classification
corona product of a star with a cycle based on f-colorings.

rem 2.3 Let n >3 and m > 3. G =5, © C,,.

gL = 1‘, v e V(C‘nl)~,
ol fv) = [%1, v are n pendant vertices in V(S,),
G € Cy2. Otherwise, G € Cyl.

i

se, we can construct an f-coloring C' by using Af(G) colors. Let the
of the star be labeled by w and are pendant vertices of the star be la-
by v, v, ..., v,, respectively. If f fulfills the premise of the theorem,
Ap(G) = 3. If Ag(G) = 1, it is clear that an f-coloring of G with one
For Af(G) > 2, we divide the proof into three cases as follows.

I A (G) =2

1 € [1,[5]]. we color all edges of wheels which the center of wheel is
by using f-coloring C such that |C(i)| < 2 for every v € V(C,,) and
(@] < [5]. If the center of wheel is vg,, we color all edges of wheels by
the similar technique but we have to replace color 1 with 2 and otherwise.
y, for i € [1,n]. we color wv; by 1, 2 alternately and we color the wheel
the center of wheel is w by using f-coloring C. Hence. G € Cyl.

g A (G)=3
vide the proof into three subcases.

ase 2.1 For m # 5. Let m = 3r + s for some s € [0,2] and r € [1, [2])].
can color all edges of wheels as follows.

L If the center of the wheel is v3,_5. then we construct an f-coloring C' by
- using the similar technique in the Theorem 2.1 Subcase 2.1.

If the center of the wheel is v4,_;. then we construct an f-coloring C' by
- using the similar technique in the Theorem 2.1 Subcase 2.1, but we have
~ to replace color 1 with 2 and otherwise.

3. If the center of the wheel is vgy. then we construct an f-coloring C' by
- using the similar technique in the Theorem 2.1 Subcase 2.1, but we have
- o replace color 1 with 3 and otherwise.
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Finally, for all edges of the wheel which the center of the wheel is w,
struct an f-coloring by using the similar technique in the Theorem 2.
2.1 and for j € [1,m], we color wv; by 1,2, 3, alternately. Hence, G

Subcase 2.2 For m = 5 and f fulfills premise of the theorem, by
same reason in the proof of the Theorem 2.1 Subcase 2.2, we can not
an f-coloring by using 3 colors. Hence, G € Cr2.

Subcase 2.3 For m = 5 and there exists u € V(C,,) with flu
w € V(Ky) with f(w) # [%], we can color all edges of G by
similar technique in subcase 2.1 by using 3 colors such that c; Y
C; (i) # %] for some i € [1,3], u € V(C) or v € {v1, v, ..., vp}e.
G € Cyl.

Case 3. Af(G) >4
We obtain V* C V(S,). If there exist v € V(S,) such that v € Vir
rem 1.1, we have G € Cy1. Otherwise, by Theorem 1.2, we have G € ¢
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