
Transmission Scheduling in Sensor Networks via
Directed Edge Coloring

Maggie Cheng Li Yin
Department of Computer Science

University of Missouri
Rolla, MO 65401

{chengm,lyh38}@umr.edu

Abstract— This paper presents a transmission scheduling
scheme in sensor networks. Each node is assigned a list of
time slots to use for unicast and broadcast communication.
The algorithm employs edge coloring on a directed graph for
transmission scheduling. It is different from previous works that
use vertex coloring of a graph for node scheduling, or those that
use edge coloring of undirected graphs for link scheduling. The
proposed algorithm uses the least number of time slots compared
to its counterparts and it avoids both the hidden terminal problem
and the exposed terminal problem in both unicast and broadcast
communication.

Index Terms— MAC, TDMA, sensor networks, edge coloring,
vertex coloring

I. INTRODUCTION

Wireless sensor networks have been envisioned to have wide
applications in security surveillance, health care, and habitat
monitoring. Sensor networks usually consist of a collection of
small nodes powered by battery. Each of these sensor nodes has
a limited transmission range and sensing range, but together
they achieve a high level sensing and communication task. In
such wireless sensor networks, multiple hop transmission is
indispensable.

A MAC layer scheme plays an important role in improving
the timeliness of data dissemination and data gathering as
well as energy efficiency, which are all important performance
measures of sensor networks. In the past, random schemes
inherited from wireless ad hoc networks have been adopted
for sensor networks. However, a random scheme could waste
energy due to collisions. If CSMA/CA is used, it could waste
energy because the radio keeps listening to the channel. Yet
it still fails to provide a bounded access delay. By contrast,
TDMA can easily determine when to listen to the channel and
when to transmit, therefore it can completely avoid collisions,
provide a bounded access delay, and achieve high energy
efficiency.

Despite the overhead in setting up a fixed time slot assign-
ment, TDMA is still a promising solution for sensor networks,
because the time slot assignment is done once and used forever
(or for a relatively longer period of time). TDMA schemes are

The work is supported in part by National Science Foundation under grant
CCF-0514940.

suitable for networks that have a small or moderate number
of nodes, and can be easily extended to large scale sensor
networks by using a distributed solution that compromises op-
timality, or a clustered solution in which the task of computing
a TDMA schedule is done by multiple cluster heads rather than
by one central node, and the scale of scheduling is reduced to
a small cluster rather than the entire network.

Transmission scheduling involves assigning time slots to
nodes or links. To assign each node a unique slot certainly
can avoid collisions, but it consumes too many slots; to assign
each directional link a unique slot can also avoid collisions,
but it has the same drawback of consuming too many slots.
To efficiently use the time slots, vertex coloring of graphs for
node scheduling or edge coloring for link scheduling is used.
The purpose of computing a schedule via graph coloring is to
reduce the number of slots used. The total number of slots used
is an indication of access delay, because it determines the turn
around time for each transmitter.

The objective of vertex coloring is to assign colors to ver-
tices such that adjacent vertices get different colors and the total
number of colors used in minimum. Different graph models
have been proposed to avoid the hidden problem in wireless
networks, but they cannot solve the exposed terminal problem.
The inherent problem with the vertex coloring approach is that
nodes that are connected by an edge cannot use the same color,
which gives rise to the exposed terminal problem.

Edge coloring is to assign colors to edges such that edges
incident on the same vertex must use different colors and the
total number of colors used is minimum. Extensions from the
classical edge coloring problem have been proposed, such as
distance-k edge coloring, which requires edges at distance < k
use different colors, i.e., for two edges e and e′ with the same
color, the minimum path length between them is at least k.
An invariant result from this approach is that edges that share
a vertex cannot use the same color, no matter what value of
k is used. This causes difficulty for broadcast traffic, because
a node would need to send to each individual destination in
different slots.

Vertex coloring is good for broadcast scheduling and edge
coloring is good for unicast scheduling. In sensor networks,
the dominant traffic includes both broadcast and unicast, and
the two traffic modes are often interleaved. For example, the

1-4244-0353-7/07/$25.00 ©2007 IEEE 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 



superframe

broadcast unicast

superframe

broadcast unicast

t

Fig. 1. A super frame that separates unicast traffic from broadcast traffic

u v x y

u v x y

u v x y
(a)

(b)

(c)

Fig. 2. Edge coloring on an undirected graph

base station needs to disseminate a query to all nodes through
broadcast, and each sensor node needs to report its sensory
data upstream to the base station through unicast. It is not
feasible to keep two schedules and make nodes switch from
one schedule to another immediately. Alternatively, to use a
superframe that reserves a fixed number of slots for unicast and
broadcast separately will end up using too many slots (Fig. 1).

Currently, all existing work on edge coloring is to assign
colors to undirected edges on an undirected graph. Using this
approach for transmission scheduling in sensor networks, each
undirected edge will be mapped to two directional links, and
each color will be mapped to two time slots. The direction
of transmission is considered after edge coloring is completed,
which often yields unsatisfactory result. For the example in
Figure 2.(a), to assign edges (u,v) and (x,y) different colors
can lead to the exposed terminal problem (Figure 2.(b)),
which is manifested as using more slots than necessary in this
context, but to assign them the same color can lead to the
hidden terminal problem (Figure 2.(c)). The inherent problem
of edge coloring on an undirected graph is that each edge is
undirected therefore during edge coloring phase the direction
of transmission is not considered; adding the directions later
won’t change the result of edge coloring.

The above observations motivate a different graph coloring
scheme that is not confined by the vertex coloring and classical
edge coloring and can meet the unique communication needs of
sensor networks. In order to (1) use minimum slots in order to
reduce the turn around time of each node, (2) accommodate
both unicast and broadcast traffic, and (3) avoid both the
hidden terminal problem and the exposed terminal problem
in all traffic, neither vertex coloring nor edge coloring of an
undirected graph is good enough.

We therefore propose to assign time slots to directional links
via edge coloring of a directed graph. The number of colors
needed is the same as the number of time slots needed. By
contrast, in a two-phase approach that first computes a proper
edge coloring of an undirected graph then generates 2 time
slots for each color and maps time slots to directional links,
the number of time slots needed is twice the number of colors
needed. Since it is different from classical undirected edge
coloring, new rules for time slot reuse are defined in this paper.

1 1

1

2

2

2

(a)

1
1

3

4

2

4
2

3

?

?

?
?

(b)

1

1

3
2

1

2

1

3

3

2
2

3

(c)

Fig. 3. (a) For a cyclic graph, edge coloring of the undirected graph results in
an odd number of edges with the same color on a cycle; (b) Based on the result
from (a), there is no proper edge orientation that produces an interference-free
transmission schedule; (c) Using edge coloring on a directed graph can directly
find a transmission schedule.

Edge coloring on a directed graph also successfully solves
another problem that the previous approach can not solve—
When there are an odd number of edges with the same color
on a cycle, previous two-phase approach will fail to find
an edge orientation. Fig. 3 shows the detail. The proposed
algorithm Edge Coloring on Directed Graphs(ECDiG) is eval-
uated through extensive simulation. The results show that this
algorithm uses less time slots than the previous approaches
that use edge coloring of undirected graphs. By using ECDiG
algorithm, nodes use a consistent schedule for both broadcast
and unicast, and most importantly it completely avoids the
hidden terminal problem and the exposed terminal problem.
Finally, needless to say, it can handle transmission schedule
for networks with unidirectional links where the transmission
power of nodes at the two ends of a link is not the same, which
is very possible in wireless networks.

The rest of the paper is organized as following. Section
II surveys the most related work on transmission scheduling
via edge coloring and vertex coloring. Section III presents the
directed edge coloring algorithm. Section IV provides results
compared with the OEC scheme from [1]. Finally, section V
ends the paper with plans for future work.

II. RELATED WORK

Channel assignment problem has a similar combinatorial
structure to the graph coloring problem, i.e., to have trans-
mitters that are sufficiently apart use the same channel. Spatial
reuse can maximize channel utilization. One of the objectives
of channel assignment is to maximize the number of users
sharing the same channel simultaneously or to use as little
as possible channel resource to support a certain group of
users. Channel assignment could be time slots assignment (for
TDMA), frequency assignment (for FDMA), or code assign-
ment (for CDMA). In [2], a unified framework was introduced
to identify atomic constraints underlying most assignment
problems. Here we discusses the channel assignment problem
in the context of TDMA. Typically, edge coloring is used for
link scheduling and vertex coloring is used for node scheduling.

A. Edge Coloring Approach

Edge coloring of undirected graphs has long been used for
link scheduling in wireless networks. This approach typically

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 



involves two phases: in the first phase, a proper edge coloring
is computed to make sure that edges incident on the same
vertex get different colors; in the second phase, each time slot
is mapped to a unique link with a direction of transmission. If
t colors are required for a proper edge coloring of the graph, 2t
time slots are needed to schedule all unicast transmissions. [3],
[1] belong to this category. Some variations of this approach
use distance-k edge coloring in the first phase with k > 1. A
popular one is distance-2 edge coloring [4], which requires no
two edges of the same color be incident on the same vertex or
neighbors.

Vizing’s theorem states that a graph can be edge-colored in
either δ or δ +1 colors, where δ is the maximum degree of the
graph. A constructive proof of the theorem can find a proper
edge coloring of the graph [5], which by itself is a centralized
edge coloring algorithm using at most δ + 1 colors. In [3], a
distributed version of the algorithm is proposed that colors a
graph with at most δ +1 colors. The link scheduling will need
2(δ + 1) time slots correspondingly. But the algorithm in [3]
requires even number of edges with the same color on a cycle.
For cycles with an odd number of edges with the same color,
the second phase will fail to find a valid orientation of edges.

To find the optimal edge coloring of an undirected graph is
NP-complete [6]. Distributed edge coloring algorithms with a
performance bound includes [7], [8]. The best result is obtained
in [9] that generates a valid edge coloring using (1 + ε)δ
colors in O(polylog(n)) time. Herman et al. [1] expanded it
to oriented edge coloring, which includes the edge coloring
algorithm in [9] as the first step, and then re-colors edges
randomly with probability p, and then assigns orientations to
all edges. Compared with [3], Herman et al. improved the time
complexity from linear to O(polylog(n)), but the problem with
odd cycles remains, even though the re-coloring process in the
second phase re-color some edges with a probability p, there
is no guarantee that cycles with an odd number of edges of the
same color will be changed.

B. Vertex Coloring Approach

Vertex coloring has been used for node scheduling in
telecommunication systems[10], [11], [12], [13]. In TDMA
systems, the optimization objective is to allow nodes to transmit
without generating interference to each other while using a
minimum number of time slots. Different classes of graphs
have been used to model wireless networks. In containment
graphs, two nodes must be assigned different time slots if
one is in the transmission range of the other, thus only the
primary interference is considered when the intended receiver
is transmitting at the same time. However, this gives rise to
the hidden terminal problem due to the secondary collision—
when the intended receiver is in the transmission range of
two active transmitters. Intersection graphs avoid the hidden
terminal problem at the cost of more slots— In intersection
graphs, two nodes must be assigned different time slots if
their coverage area overlaps with each other regardless of the
locations of the receivers. This model can be justified in cellular

systems where channel assignment to base stations only needs
to consider the coverage area of the base stations without
considering the location of mobile users. In ad hoc networks
where every node’s location matters, the intersection graphs can
not be used. Actually a better solution can be derived from the
containment graphs. Suppose the containment graph is G, the
proper vertex coloring of G2 can avoid the hidden terminal
problem with less time slots, where G2 is a graph in which the
vertex set is the same, and the edge set includes the original
edge set and the edges that connect pairs of nodes within 2-
hops. A proper vertex coloring of G2 is also called distance-2
vertex coloring of G. In [14] a new graph model is proposed
that extends the distance-2 vertex coloring to handle scenarios
where the service area of a node is smaller than the interference
area. In this case, a node s is able to interfere with another node
t’s reception even if t is not in s’s service area and therefore
can not be the intended receiver of s.

III. EDGE COLORING OF DIRECTED GRAPHS

Instead of using a two-phase approach that first computes a
proper edge coloring of an undirected graph, then generates 2t
time slots for t colors and assigns time slots to directed edges,
we propose to build the directed graph first and then assign
colors to directed edges directly based on the following rules:

1) Edges that are conflicting with each other must use
different colors;

2) Edges that are not conflicting with each other can use
the same or different colors.

The following section describes the criteria for determining
if conflict exists between two directional edges.

A. Conflict Check Criteria

The conflict check procedure should eliminate the hidden
terminal problem and at the same time avoid the exposed
terminal problem. This motivates a different definition of
“proper edge coloring” of directed graphs from the classical
edge coloring— In classical edge coloring, edges are undirected
and two edges are considered conflicting with each other if they
are incident on the same vertex.

If two edges satisfy one of the following two conditions,
they are considered conflicting with each other (see Fig. 4.(a)
and (d)).

1) Two edges share the same vertex and at least one of them
is an in-edge of this vertex (Fig. 4.(a)) ; or

2) Two disjointed edges are conflicting if there is a third
edge that shares the head with one edge and shares the
tail with the other (Fig. 4.(d)).

Note that two edges are not conflicting if they only share
the tail, as shown in Fig. 4.(c); and the disjointed edges
(highlighted) in (b) are not conflicting because the transmission
on one edge won’t be heard by the destination of the other. In
the following algorithm, procedure conflict(c, e) will return
TRUE if edge e cannot be colored in color c because there
exists an edge f of color c that has a conflict with e.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 



vu w

vu

vu w

(a)
u v x y

u v x y

(b)

vu w
(c)

u v x y

(d)

Fig. 4. Conflict check criteria

In addition, regardless of the direction of edges, we define
distance-2 edges and distance-1 edges as follows: if two edges
are incident on the same vertex, we call them distance-1 edges;
if two disjointed edges are incident on neighbors, we call them
distance-2 edges. Conflicting edges could be distance-2 edges
or distance-1 edges as shown in Fig. 4.(a, d); non-conflicting
edges could also be distance-2 edges or distance-1 edges as
shown in Fig. 4.(b, c).

B. Algorithm Description

In the following edge coloring algorithm ECDiG, the di-
rected graph G(V,E) is the graph model of the network. A
directed edge (u, v) ∈ E represents the one way transmission
from node u to node v.

ECDiG(G(V,E))
let S = E
initialize each edge e ∈ S as unvisited and uncolored, set
tag(e) = φ
while S �= φ do

randomly select an edge r from S
let c be the smallest color not included in tag(r)
visited(r)=TRUE
BuildTree(r, c)
TraverseTree(r, c)
for each edge e in S do

visited(e)=FALSE
end for

end while
END of ECDiG

BuildTree(r, c)

color(r)=c, colored(r)=TRUE, S = S \ {r}
for each distance-2 edge e of r do

if visited(e)=FALSE then
visited(e)=TRUE
if conflict(c, e)=FALSE then

add e to the children list of r
else

tag(e) = tag(e) ∪ {c}
end if

end if
end for
for each child g of r do

BuildTree(g, c)
end for

END of BuildTree

TraverseTree(r, c)

for each distance-1 edge e of r do
if visited(e)=FALSE then

visited(e)=TRUE
if conflict(c, e)=FALSE then

color(e)=c, colored(e)=TRUE, S = S \ {e}
else

tag(e) = tag(e) ∪ {c}
end if

end if
end for
for each child g of r do

TraverseTree(g, c)
end for

END of TraverseTree

The time complexity of ECDiG is O(m∆̇), where ∆̇ is
the maximum number of edges within any edge’s distance-2
neighborhood, and m is the number of edges.

C. Walk-through Example

A walk-through example using ECDiG is shown in Fig.
5. ECDiG algorithm yields 5 colors, exactly the same as the
optimal solution. The two-phase algorithms from [3] and [1]
that use edge coloring on an undirected graph first and then
map time slots 2i − 1 and 2i to the pair of edges with color i
won’t find a solution for this example due to the reason stated
in section I (Fig 3).

D. Remarks on Jointed Non-conflicting Edges

The result from the ECDiG algorithm is that each directed
edge will receive a color (or a time slot). Each node will receive
a collection of time slots that it can use for transmission. When
multiple out-edges of a node v are assigned the same color, e.g.,
in Fig. 6, edges (v, b), (v, c) and (v, d) are assigned color #2,
it means for unicast data, node v will use slot #2 from different
cycles to transmit to each of them, because the data packet for
each destination is different; but for broadcast data, node v will
use slot #2 only once to reach node b, c, and d.

IV. SIMULATION RESULTS

A. Transmission Scheduling in Sensor Networks

We applied the edge coloring algorithm ECDiG on sensor
networks for active transmission scheduling. The first exper-
iment is for link scheduling given unicast traffic. The sensor
networks are randomly deployed in a square area of 1000 ×
1000 with node transmission range 150. Each node randomly
selects a neighbor as its destination, so the total number of
active transmissions is equal to the total number of nodes.
Each node has an out-degree 1 and an in-degree between 0 to
∆, where ∆ is the maximum number of active transmissions
toward a single destination. Experiments are done on sensor
networks with 100 ∼ 800 nodes. For each size, 100 sensor
networks are randomly generated and the results from the 100

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 



a

b

c

d

e

f

g

h
i

j
(a)

a

b

c

d

e

f

g

h
i

j

1

1

1

1

1

1
1

2

2

2

2

2

2

3

3

3

34

4

4

5

5

5

5

(b)

(a,b)

(i,d) (g,h)

(a,c) (i,j)
(c)

(a,b)

(i,d) (g,h)

(a,c) (i,j)

(a,e)

(g,f)

(d)

(d,i)

(b,a) (b,h)

(d,c) (f,g)(f,e)
(e)

(h,g)

(e,f) (b,d) (j,i)
(f)

(j,h)

(d,b)

(e,a)
(g)

(c,a)             (c,d)

(h,b)              (h,j)
(h)

Fig. 5. Example Implementation of ECDiG. Distance-1 edges are connected
by dashed lines. (a)given graph G; (b)final color assignment; (c)at the end of
BuildTree for c=1; (d)at the end of TraverseTree for c=1;(e)monochromatic
tree for c=2;(f)monochromatic tree for c=3; (g)monochromatic tree for c=4;
(h)monochromatic tree for c=5.

v
d1

2

2

2
a

b

c

color(v)={1,2}

Fig. 6. Node v sends to node a in slot #1; sends to b, c and d in slot #2.

runs are averaged. The results shown in Fig. 7 indicate that
the ECDiG algorithm uses much more time slots when node
density increases even though the ∆ remains almost the same,
which is mainly due to the conflicts shown in Fig. 4.(d).

The second experiment is for transmission scheduling for
both unicast and broadcast traffic. A tree 1 rooted at the base
station is used for data dissemination and data gathering. Edges
pointing toward the base station are used for data gathering,
and edges pointing away from the base station are used for

1It could be a shortest path tree, or a diffusion tree, etc. We chose to use
the shortest path tree in this experiment.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100  200  300  400  500  600  700  800

tim
es

lo
ts

 v
s 

in
-d

eg
re

e

Number of Nodes

timeslots
in-degree

Fig. 7. Node Scheduling in Sensor Networks

data dissemination. The scheduling algorithm needs to assign
every directional edge a valid time slot. Sensor networks are
randomly deployed as described above. In the following tables,
h(c) is the height of the monochromatic tree in ECDiG, and d(c)
is the diameter of the monochromatic component in OEC. G
is the shortest path tree of the original disk graph that models
the sensor network, D(G) is the diameter of G, ∆(G) is the
maximum degree of G, and V(G) is the number of nodes in
G. The numbers of time slots required by ECDiG and OEC
algorithms are compared: in average, OEC uses 30% ∼ 63%
more time slots than ECDiG. As to the running time, OEC is
dependent on the diameter of the monochromatic component,
which corresponds to the height of the monochromatic tree in
ECDiG. A comparison on h(c) and d(c) indicates that OEC
loses to ECDiG by 42% ∼ 74% .

Comparing the time slots used in this experiment and those
in the first experiment, the results suggest that joint scheduling
for unicast and broadcast saves time slots compared to the
superframe approach that reserves a fixed number of slots for
unicast traffic and a fixed number of slots for broadcast traffic,
in which the total number of slots required is the sum of the
two (Fig. 1).

TABLE I

SPANNING TREE

ECDiG | OEC
slots h(c) D(G) ∆(G) V(G) | slots d(c)
12.44 7.45 17.78 8.07 100 | 16.14 10.60
20.03 6.91 15.89 14.32 200 | 28.64 10.77
34.05 6.38 14.72 25.74 400 | 51.48 10.78
47.94 6.31 14.58 37.91 600 | 75.82 11.00
59.14 6.53 14.79 48.15 800 | 96.30 11.37

In addition, we also observed the list of time slots each node
receives. For all network sizes, the average list size is 1.2 ∼ 1.4,
and the standard deviation is 0.57 ∼ 0.63, which indicates that,
compared to a vertex coloring approach that assigns each node
exactly one slot, our approach does not require significantly

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 



more slots for broadcast traffic.

B. Graph Coloring of Tree Structures

In order to further compare the channel efficiency of ECDiG
algorithm with OEC, we tried graph coloring on acyclic graphs.
Since OEC does not guarantee solution on cyclic graphs, we
can only use tree structures. We choose three types of trees—
random trees, caterpillar trees and bush trees. These trees are
generated using Mathematica in the same way as in [1].

We compare maximum height of the monochromatic trees
in ECDiG and the maximum diameter of the monochromatic
components in OEC, and the number of time slots needed
for each algorithm. In ECDiG, the slot number is the color
number; in OEC, the slot number is twice the color number.
This comparison gives a fair evaluation of the two algorithms
in terms of channel efficiency and running time. The results in
tables II, III, and IV show that ECDiG uses less time slots and
shorter running time than OEC does for every type of trees and
in any size.

TABLE II

BUSH TREE

ECDiG | OEC
slots h(c) D(G) ∆(G) V(G) | slots d(c)
6.08 7.05 12.55 4.01 62.20 | 8.02 9.93
6.66 13.60 21.11 4.65 184.50 | 9.30 18.64
6.96 18.25 27.23 4.92 315.60 | 9.84 24.73
7.21 20.10 29.64 5.18 420.00 | 10.36 27.22
7.39 26.89 38.07 5.35 654.50 | 10.70 35.81
7.69 32.01 44.71 5.60 922.00 | 11.20 42.47
7.71 41.95 56.33 5.68 1406.00 | 11.36 54.04

TABLE III

CATERPILLAR TREE

ECDiG | OEC
slots h(c) D(G) ∆(G) V(G) | slots d(c)
8.07 12.68 21.00 6.01 100 | 12.02 15.74
9.15 23.38 35.00 7.02 200 | 14.04 28.53
10.13 41.51 58.00 8.00 400 | 16.00 48.08
10.19 64.61 87.00 8.02 600 | 16.04 74.18
11.15 78.51 101.00 9.02 800 | 18.04 88.47
11.11 99.96 126.00 9.02 1000 | 18.04 111.33
13.13 122.03 151.00 11.01 1500 | 22.02 133.97

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a new transmission scheduling
algorithm in sensor networks. The algorithm uses edge coloring
on a directed graph to compute the time slots that a node
can use when transmitting to each of its neighbors and when
broadcasting to all neighbors. The resulting assignment can
guarantee there is no hidden terminal problem and exposed
terminal problem any time in any communication modes and

TABLE IV

RANDOM TREE

ECDiG | OEC
slots h(c) D(G) ∆(G) V(G) | slots d(c)
7.26 12.16 27.64 5.18 100 | 10.36 15.48
7.67 18.45 42.71 5.60 200 | 11.20 24.66
8.11 27.94 62.60 6.01 400 | 12.02 36.84
8.35 33.78 78.11 6.30 600 | 12.60 45.88
8.37 38.05 87.95 6.28 800 | 12.56 52.04
8.65 43.81 102.81 6.56 1000 | 13.12 61.24
8.85 52.28 107.21 6.77 1500 | 13.54 73.12

the total time slots used is the least so far, which implies low
access delay (or turn around time) and high channel utilization.

In the future, we intend to design an efficient distributed
version of ECDiG algorithm and develop it into a full-fledged
MAC protocol that supports TDMA on top of a random access
network.

REFERENCES

[1] T. Herman, S. Pemmaraju, and I. Pirwani, “Oriented edge colorings and
link scheduling in sensor networks”, in First International Conference
on Communication System Software and Middleware, 2006 (Comsware
2006), 2006, pp. 1– 6.

[2] S. Ramanathan, “A unified framework and algorithm for channel
assignment in wireless networks”, Wireless Networks, vol. 5, no. 2, pp.
81–94, 1999.

[3] S. Gandham, M. Dawande, and R. Prakash, “Link scheduling in sensor
networks: distributed edge coloring revisited”, in INFOCOM 2005, 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies, 2005, vol. 4, pp. 2492 – 2501.

[4] Mohammad Mahdian, “On the computational complexity of strong edge
coloring”, Discrete Appl. Math., vol. 118, no. 3, pp. 239–248, 2002.

[5] J. Misra and D. Gries, “A constructive proof of vizing’s theorem”, Inf.
Proc. Lett., vol. 41, pp. 131–133, 1992.

[6] Ian Holyer, “The np-completeness of edge-colouring”, SIAM J. COM-
PUT, vol. 10, no. 4, pp. 718–720, November 1981.

[7] Alessandro Panconesi and Aravind Srinivasan, “Improved distributed
algorithms for coloring and network decomposition problems”, in STOC
’92: Proceedings of the twenty-fourth annual ACM symposium on Theory
of computing, New York, NY, USA, 1992, pp. 581–592, ACM Press.

[8] A. Panconesi and A. Srinivasan, “Randomized distributed edge coloring
via an extension of the chernoff-hoeffding bounds”, SIAM Journal on
Computing, vol. 26, pp. 350–368, 1997.

[9] David A. Grable and Alessandro Panconesi, “Nearly optimal distributed
edge colouring in o(log log n) rounds”, in SODA ’97: Proceedings
of the eighth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA, 1997, pp. 278–285, Society for Industrial and
Applied Mathematics.

[10] R. Ramaswami and K.K. Parhi, “Distributed scheduling of broadcasts
in a radio network”, in INFOCOM 89, April 23-27, 1989, vol. 2, pp.
497–504.

[11] Sven O. Krumke, Madhav V. Marathe, and S. S. Ravi, “Models and
approximation algorithms for channel assignment in radio networks”,
Wireless Networks, vol. 7, no. 6, pp. 575–584, 2001.

[12] S. Ramanathan and Errol L. Lloyd, “Scheduling algorithms for multi-
hop radio networks”, in SIGCOMM ’92: Conference proceedings on
Communications architectures & protocols, New York, NY, USA, 1992,
pp. 211–222, ACM Press.

[13] Arunabha Sen and Mark L. Huson, “A new model for scheduling packet
radio networks”, Wireless Networks, vol. 3, no. 1, pp. 71–82, 1997.

[14] M. X. Cheng, S. C. Huang, X. Huang, and W. Wu, “New graph model
for channel assignment in ad hoc wireless networks”, IEE Proceedings
– Communications, vol. 152, no. 6, pp. 1039–1046, December 2005.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 


	Select a link below
	Return to Main Menu




