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Abstract

Polycystic ovary syndrome (PCOS) is an endocrine ab-
normality with multiple diagnostic criteria due to its het-
erogenic manifestations. One of the diagnostic criteria in-
cludes analysis of ultrasound images of ovaries for the de-
tection of number, size, and distribution of follicles within
the ovary. This involves manual tracing and counting of fol-
licles on the ultrasound images to determine the presence
of a polycystic ovary (PCO). We describe a novel method
that automates PCO detection. Our algorithm involves seg-
mentation of follicles from ultrasound images, quantifying
the attributes of the automatically segmented follicles us-
ing stereology, storing follicle attributes as feature vectors,
and finally classification of the feature vector into two cate-
gories. The classification categories are: PCO present and
PCO absent. An automatic PCO diagnostic tool would save
considerable time spent on manual tracing of follicles and
measuring the length and width of every follicle. Our proce-
dure was able to achieve classification accuracy of 92.86%
using a linear discriminant classifier. Our classifier will
improve the rapidity and accuracy of PCOS diagnosis, re-
ducing the risk of the severe complications that can arise
from delayed diagnosis.

1. Introduction

Polycystic ovary syndrome (PCOS) is an ovarian abnor-
mality that affects 5 - 10 % of women of reproductive age
[6]. The exact cause of PCOS is not well established, but in-
sulin resistance and androgen excess play an important role
on its onset. Insulin resistance leads to excess insulin levels
causing over-production of male hormones, elevated levels
of blood fats, and subsequent ovarian dysfunction. Women
with PCOS are at greatly increased risk of cardiovascular
disease, diabetes, and obesity; however, most are first di-
agnosed by a reproductive endocrinologist upon referral for
infertility.

Symptoms of PCOS include irregular menses, infertil-
ity, obesity, excessive production of male hormones exhib-
ited by male-pattern facial and bodily hair growth, acne, and
male-pattern balding [1]. It is therefore important to screen
for polycystic ovaries in order to improve the rapidity with
which this condition can be diagnosed. An automatic de-
tection algorithm, such as that described herein, could be
applied to routine scans and facilitate early, accurate diag-
nosis by family physicians and general radiologists, and al-
low intervention that may abate or obviate the severe con-
sequences of the disease.

The current criteria for the diagnosis of PCOS was es-
tablished jointly by the American Society for Reproductive
Medicine (ASRM) and the European Society of Human Re-
production and Embryology (ESHRE). There are three cri-
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teria for the diagnosis of PCOS: Oligo- and/or anovulation
(failure to ovulate), clinical and/or biochemical signs of ex-
cessive production of male hormones, and the presence of
polycystic ovaries in at least one of the ovaries (in an ultra-
sound examination). The ASRM/ESHRE recommend that
PCOS should be diagnosed if two of these three criteria are
met [2].

By current convention, the ultrasonographic morphology
of a polycystic ovary (PCO) is characterized by the presence
of 12 or more ovarian follicles (roughly spherical fluid-filled
cavities in which eggs develop) which are 2-9mm in size,
and/or a total ovarian volume of more than 10cm3 [2]. In
contrast, a normal ovary usually contains fewer than 10 fol-
licles with one dominant follicle reaching a maximum di-
ameter of 20-25mm prior to ovulation. Conventional detec-
tion of PCOS involves analyzing ovarian ultrasound images
for PCO morphology, and testing for biochemical/clinical
signs for excess male hormones. Ovarian ultrasound images
are analysed for PCO by counting the number of follicles,
identifying follicle size and distribution, and evaluating the
ratio of number of follicles to ovarian volume.

Accurate analysis of the pelvic ultrasound images is im-
portant for the detection of PCO. Presently, most ultra-
sound images are analysed manually for diagnostic pur-
poses. Hence there is a high variance in the detection of
PCO among different gynecologists/radiologists. Our work
aims to automate the analysis of pelvic ultrasound images
for detecting PCO by examining the number, size, and dis-
tribution of follicles within the ovary. This was achieved us-
ing a three step process involving segmentation of follicles
from ultrasound images using image processing methods,
application of a mathematical stereology to quantify the at-
tributes of the segmented follicles, and pattern recognition
techniques to classify the feature vector obtained from the
previous steps into one of the two categories: PCO present
or PCO absent.

The novelty of our method lies in the amalgamation of
the follicle segmentation technique and the stereological
methodology which results in the creation of a feature vec-
tor quantifying ovarian morphology.

The problem of detecting the overall spatial distribution
of follicles in the ovary was also studied. Two different gen-
eral distributions are possible: peripheral distribution and
random distribution. In peripheral distribution, follicles are
distributed along the periphery of the ovary, and in random
distribution follicles are distributed more or less uniformly
within the ovary. Normal ovaries usually present a random
distribution and may exhibit one or two “dominant” folli-
cles which, by definition, are at least 2-3mm larger than the
rest. Polycystic ovaries typically exhibit a more peripheral
distribution pattern, although there are notable exceptions.
A method of automatically detecting the mode of follicle
distribution is explained in Section 6.3.

Normal Ovary Polycystic Ovary

Figure 1. Examples of normal and polycystic
ovaries. The normal ovary (left) contains a
dominant follicle (large dark region) and ex-
hibits a random follicle distribution. The poly-
cystic ovary (right) has no dominant follicle
and exhibits peripheral distribution.

2. Follicle Segmentation

Ovarian follicles are roughly spherical, fluid-filled struc-
tures in which oocytes (eggs) develop. Follicles imaged
in two dimensions appear as dark, roughly circular regions
in ultrasound images since fluid does not reflect ultrasono-
graphic pulses. Figure 1 shows examples of a normal and
a polycystic ovary. PCO ovaries typically exhibit a larger
number of smaller, possibly irregularly shaped follicles, and
a peripheral distribution of follicles.

Various follicle segmentation techniques have been pro-
posed and they can be categorized into grey-level thresh-
olding and graph searching techniques [8, 12], region grow-
ing methods [10], texture-based methods [7, 9] , and object
recognition algorithms [11].

For the automatic PCO diagnosis algorithm described
herein, the follicles whose structural and geometric char-
acteristics have to be determined were segmented using a
region growing algorithm based largely on that of Potočnik
and Zazula [10]. This framework was chosen because,
of the known follicle segmentation algorithms, it has the
highest follicle recognition rate of 78% and relatively few
false positives compared to its competitors (specificity 0.71)
[10]. It is also fully automatic. The algorithm operates in
three phases: Identification of homogeneous regions, region
growing, and follicle extraction. Since this algorithm was
designed to segment follicles in normal ovaries, modifica-
tions were made in order to accomodate the different prop-
erties of polycystic ovaries. Subsections 2.1 through 2.3 de-
tail the algoirthm; modifications from the original version
[10] are noted.

2

Fourth Canadian Conference on Computer and Robot Vision(CRV'07)
0-7695-2786-8/07 $20.00  © 2007

https://www.researchgate.net/publication/8925560_Ultrasound_assessment_of_the_polycystic_ovary_International_Consensus_Definitions?el=1_x_8&enrichId=rgreq-f22d12a4-a2cf-4f73-a2e6-811d9bd62de9&enrichSource=Y292ZXJQYWdlOzQyNTI2MTE7QVM6MTA0NTMxOTA4MTA0MjAzQDE0MDE5MzM3NTgwMDk=
https://www.researchgate.net/publication/8925560_Ultrasound_assessment_of_the_polycystic_ovary_International_Consensus_Definitions?el=1_x_8&enrichId=rgreq-f22d12a4-a2cf-4f73-a2e6-811d9bd62de9&enrichSource=Y292ZXJQYWdlOzQyNTI2MTE7QVM6MTA0NTMxOTA4MTA0MjAzQDE0MDE5MzM3NTgwMDk=


2.1. Identification of Homogeneous Regions

Since follicles appear nearly black in ultrasonographic
images, a homogeneous region was considered to be one in
which the pixels had similar greyscale values. Identifica-
tion of homogeneous regions was achieved by filtering the
image with an adaptive neighborhood median filter using a
threshold T1, which was set to the mean grey level of the
original image. Pixels with intensity below T1 were filtered
using an 11 × 11 neighborhood, and pixels with intensity
above this threshold were filtered using a 5 × 5 neighbor-
hood. This causes a greater amount of smoothing in darker
regions which are more likely to be part of a follicle and bet-
ter preserves edges in brighter regions. The smoothing step
was then repeated to ensure elegant smoothing of follicle
regions. An 11×11 neighborhood size was chosen because
a distance of 50 - 60 pixels in an ovarian ultrasound image
corresponds to approximately 10mm in reality. This size en-
sured that follicle regions were smoothed more thoroughly
than the follicle edges or the high intensity regions. Since
this step was part of the coarse estimation of follicle regions,
highly accurate determination of the threshold T1 was not
paramount. The filtered image was then thresholded using
a new rough threshold, T2, which was set to the mean inten-
sity of the smoothed image minus one standard deviation of
pixel intensities in the smoothed image. Structures which
were incorrectly merged using this procedure were coarsely
separated using binary watershed segmentation. The above
procedure resulted in some undesired homogeneous regions
that were too small to be follicle regions. Such regions were
removed by deleting regions whose area in pixels fell below
a threshold of T3. T3 was set to 50, which is approximately
a quarter of the area of the minimum detectable follicle size.
The identified homogeneous regions are then sorted in de-
scending order by area and are passed on to the region grow-
ing step.

2.2. Region growing

The homogeneous regions from the previous phase are
intial approximations of the follicles. The approximation
typically underestimates follicle area and results in regions
roughly centered within the actual follicle region. It is there-
fore appropriate to use region growing to expand the regions
to the actual follicle boundary.

Each homogeneous region was grown using an iterative
process in which an individual pixel is marked as a potential
candidate for merging with a homogeneous region if it sat-
isfied two merging criteria. The first criterion (Equation 1)
is based on the intensity of an individual pixel; the second
criterion (Equation 3) is based on weighted gradients.

Let R0 be the initial homogeneous region prior to being
grown. Region growing proceeds iteratively. Let Ri denote

the resulting region after i iterations of region growing. Let
p0...pn be the pixels from the outer boundary of region Ri.
For each iteration, Equations 1 and 3 were evaluated for all
pixels p0...pn in the outer boundary. Pixels that satisfied
both criteria were marked as potential candidates for merg-
ing with Ri to form Ri+1. The first criterion was

|I(pi)− µ(Ri)| ≤ ασ(Ri), (1)

where, I(pi) is the intensity of pixel pi, µ(Ri) is the mean
grey-level of region Ri, and σ(Ri) is the standard deviation
of grey-levels for pixels in Ri. The scaling parameter, α,
was chosen to be 1.

The second criterion used edge and texture information.
Edges can be detected by computing the gradient of the
image. However, since region boundaries are not well ex-
pressed in ultrasound images, a weighted gradient was used.
The weighted gradient magnitude is:

grad(pi) = ||∇Ik(pi)||(eG/tex(pi) − 1), (2)

where ||∇Ik(pi)|| is the gradient magnitude of Ik, tex(pi)
is the ratio of the mean grey-level and one standard devia-
tion of grey-levels in the 11× 11 neighborhood about pixel
pi, and G = 2 ln(2). As tex(pi) → ∞, the exponential
approaches 0, and when tex(pi) = 1.91, exponential quan-
tity is 1. The value 1.91 is the average signal-to-noise ratio
(SNR) in regions with ultrasound speckle. Hence, grad(pi)
is small for anechogenic follicle regions in which there is no
speckle and large for edges and noisy regions. The second
merging criterion was given as:

|grad(pi)− µ(grad(Ri))| ≤ ασ(grad(Ri)), (3)

where, µ(grad(Ri)) is the mean weighted gradient and
σ(grad(Ri)) is the standard deviation of the weighted gra-
dient in region Ri, and α was set as 2 [10].

In the original method, the marked potential candidates
were merged with the homogeneous region if at least four of
their neighbors were either in Ri already, or had also been
marked as potential candidates. In our method, two new cri-
teria have been added in addition to the above two merging
criteria. Marked potential candidates are merged with the
homogeneous regions based on the values of two region-
based scalar descriptors: Solidity and eccentricity. Solidity
is the proportion of the pixels in the convex hull of a region
that are also in the region, and eccentricity is the ratio of
the lengths of the major and minor axes of a region. If the
solidity of the merged region (original region merged with a
potential candidate), is less than the original region, then the
potential candidate is unmarked. Also, if eccentricity of the
merged region is greater than that of the original region, or
if it is greater than a threshold T4 which is set as 0.72, then
the potential candidate is unmarked. An eccentricity of 1
corresponds to a circular shape, and it was found that an
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eccentricity of 0.72 gave optimum results for segmentation
of follicular structures. These shape descriptors are an im-
portant addition to the merging criteria as they ensure that
regions retain a compact shape during growth. The growing
was halted when the final region Rn was equal to that of the
previous step Rn−1.

2.3. Follicle extraction

The identified regions of the previous step were further
analyzed in an attempt to remove those that did not corre-
spond to an actual follicle. Identified regions with an area
less than 220 pixels were removed since this corresponds
to the approximate area of the smallest visible follicles (2-
3mm diameter). Also, if the ratio of a follicle’s area to that
of the area of its bounding box was less than 0.5, it was re-
moved from consideration. All the regions satisfying these
two measures were labelled and holes inside them filled.

Regions touching the image borders are removed in [10],
but were retained in our method. This was because follicles
in a polycystic ovary tend to be located along its periphery
and we wished to retain peripheral follicles for the follicle
distribution analysis described in Section 6.3.

3. Stereology and Feature Extraction

The second phase of the polycystic ovary detection al-
gorithm is the generation of a feature vector for the image
which describes the segmented follicles. The feature vec-
tors are used in the third phase of the algorithm (see Sec-
tion 4) which classifies feature vectors as arising from either
polycystic or normal ovaries.

Features were derived using a mathematical methodol-
ogy called stereology [13], originally developed to under-
stand the 3D geologic composition of the earth from core
samples. Stereology is now routinely used in histology
(study of tissues or cells using a microscope) [5] to infer
3D structure from small samples or biopsies. In stereology,
two-dimensional images are viewed as projections of three-
dimensional objects. Stereology relates three-dimensional
parameters of structures to two-dimensional measurements
that are obtained from 2D slices through the structures [13].
A variety of geometric attributes of follicles can be calcu-
lated using stereology, such as the follicle count, distribu-
tion of follicles within the ovary, and follicle size.

Stereology defines a structure as the space containing
the components of interest. Phase and particles make up
the components of a structure, where the particles are dis-
crete elements and a phase is the aggregate of all particles
of the same kind. The fundamental quantitative descriptor
of the structural entities is the density of various compo-
nents (for our application, follicles, blood vessels, corpus
luteum) within the structure (the ovary). The component of

Table 1. Example feature vectors extracted
from polycystic ovaries.

SD VD Profiles meanD maxD
0.031009 0.13876 15 23.288 46.07
0.026463 0.12936 21 21.296 55.497
0.029709 0.14693 12 25.452 41.796

interest in the detection of PCO is the follicle. The basic
quantities that describe these components are their volume,
surface area, count, and diameter. Hence, the quantitative
properties of the ovary can be described by volume density,
surface density, numerical density, and mean follicle diame-
ter. Volume density is defined as volume of the phase within
the unit volume of the structure, surface density is surface
area of the phase within the unit volume of the structure,
and numerical density is the number of follicles in the struc-
ture [13].

In histological applications, volume density measure-
ments are made using techniques such as the principle of
Delesse, linear integration, and point counting [13]. Meth-
ods such as intersection of test lines in space, intersection
with profile boundaries and the buffon principle are used
for surface density measurements [13]. The methods used
in histological applications can be replaced by computer
vision/image processing techniques on the digitized ultra-
sound images.

Volume density of a component was calculated as the
ratio of the sum of follicle profile areas to the sum of the
section area, where the area is calculated using a stereolog-
ical method called the point counting method. The point
counting method performed on histological slices was re-
placed with area estimation using Matlab R2006a on the
digitized ultrasound images. Surface density was estimated
as (4/π)×boundary density [13], where boundary density
is the ratio of the length of follicle boundary to the sec-
tion area. Length of the follicle boundary was calculated by
counting the number of pixels that make up the boundary
of the follicle region. Numerical density (number of follicle
regions per unit area) was obtained by counting the number
of follicles in the ultrasound image. Follicle size was calcu-
lated by computing the average diameter of all the follicle
regions in the given image. This was achieved by finding
the equivalent diameter of a circle with the same area as a
follicle region and was computed as

√
4 ∗Area/π.

The following five stereological features were used to
construct a feature vector describing the follicles segmented
from the input image: surface density (SD), volume den-
sity (VD), number of follicle regions per image (Profiles),
mean follicle diameter (meanD), and maximum follicle di-
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Table 2. Example feature vectors extracted
from normal ovaries.

SD VD Profiles meanD maxD
0.018479 0.13671 6 33.765 72.234
0.013556 0.096059 3 40.547 49.392
0.025535 0.15763 4 35.038 66.593

ameter (maxD). These features were chosen because they
characterize the most important aspects of follicles within
the ovary and abnormalities in follicle morphology are a
primary indication of PCO. Table 1 contains example fea-
ture vectors extracted from images of polycystic ovaries ob-
tained after the segmentation and feature extraction phases.
Table 2 contains example feature vectors extracted from
normal ovaries.

4. Classification

The feature vectors obtained from the previous step were
classified into one of the following two classes: (i) PCO
present or, (ii) PCO absent. The linear discriminant classi-
fier, k-nearest neighbor classifier (KNN), and Support Vec-
tor Machine (SVM) classifier were evaluated for their abil-
ity to correctly determine classes of feature vectors. The
classification rates of each classifier were determined us-
ing the k-fold cross validation methodology. Fundamentals
of pattern classification and details on the above classifiers
are referenced in [4]. A review of validation techniques for
medical image analysis, including k-fold cross validation,
can be found in [3].

4.1. Classifiers

The classifiers that we used in this work are the linear
discriminant classifier (the classify function in Matlab
R2006a), k-nearest neighbor classifier (knnclassify in
Matlab R2006a)), and the Support Vector Machine Classi-
fier (function svmclassify in Matlab R2006a). The two
former implementations are part of Matlab’s statistics tool-
box, and the latter is from Matlab’s Bioinformatics toolbox.

4.2. Validation

Once a classifier model has been learned from the train-
ing patterns, its ability to classify new patterns can be as-
sessed using cross validation techniques. This is accom-
plished by using only part of the available patterns for train-
ing. The remaining “test” data are used to test the perfor-
mance of the learned model. Common types of cross vali-

dation methods are the holdout method, and the k-fold cross
validation method [3].

In the holdout (or half-and-half) method, the data set is
randomly split into a training set and a testing set. A model
is learned from the training set and the validity of the model
checked by determining the classification accuracy of the
model using the testing set. Model accuracy is dependent
on the particular split of the data. The disadvantage of the
holdout method can be avoided by using the k-fold cross
validation technique. In this method, the data set is divided
into k folds, out of which k−1 folds are used as the training
set, and the remaining fold is used as the testing set. The
holdout method is performed k times, each using a different
fold as the testing set thus eliminating the dependence on
the division of the data points among the training and the
testing sets. The classification accuracy is averaged over
the k trials, and the variance decreases as k increases.

5. Experimental Setup

A total of 70 ovarian ultrasound images were obtained
from the Women’s Health Imaging Research Laboratory
(WHIRL) in Saskatoon, Canada. This set contained im-
ages of both polycystic ovaries (n = 33) and normal ovaries
(n = 37). A feature vector was extracted from each image
using phases 1 and 2 of our algorithm (see Sections 2 and 3).

The 70 feature vectors were randomly divided into k =
10 folds for evaluation using the k-fold cross validation
technique. Comparison of the classifier performance and
classification results using this cross validation method are
presented in Section 6.2.

6. Results and Discussion

Since the segmentation algorithm used to identify folli-
cles was a modified version of the algorithm in [10], a seg-
mentation validation was performed to verify the accuracy
of the modified algorithm. This process is detailed in Sec-
tion 6.1. Section 6.2 presents the classification results for
the three classifiers. Section 6.3 discusses results of a small
experiment to classify the spatial distribution of follicles as
random or peripheral (as described in Section 1) automati-
cally using the linear discriminant and KNN classifiers.

6.1. Segmentation validation

The accuracy of follicle segmentation was measured by
comparing manual segmentations generated by a human
expert (ground truth) with our automatic segmentation re-
sults using the following similarity metrics: Hausdorff dis-
tance (HDist), mean distance (MDist), and DICE coefficient
(DICE).
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Table 3. Mean validation metrics and their
standard deviations for the automatic seg-
mentation algorithm over all images in the
data set.

Mean σ
HDist 7.31mm 3.89mm
MDist 1.27mm 0.88mm
DICE 0.60 0.16
RR 83.1% 21.5%
MR 31.1% 23.3%

Hausdorff distance measures the largest minimum dis-
tance between a point on the automatically segmented re-
gion and all the points on the expert marked region and vice
versa. It characterizes the maximum deviation of the seg-
mentatation boundary from the ground truth. Let A denote
the set of points in the automatically generated boundary
and let G denote the set of points in the ground truth bound-
ary. The Hausdorff distance is then given by

d(p,B) = min
b∈B

||b− p||, (4)

HDist = max
[
max
a∈A

[d(a,G)],max
g∈G

[d(g,A)]
]

, (5)

where d(p, B) is the minimum Euclidian distance between a
point p and the boundary B. Thus, a smaller Hausdorff dis-
tance indicates a more accurate segmentation. The average
Hausdorff distance over all images was 7.31mm (standard
deviation σ = 3.89mm).

Mean distance (Mdist) is the average minimum distance
between a point on A and the boundary G. It is formally
defined as

MDist =
1
2

 1
nA

∑
a∈A

d(a,G) +
1

nG

∑
g∈G

d(g,A))

 , (6)

where nA is the total number of pixels in the segmented
region and nG is the total number of pixels in the expert
traced region. The average MDist over all images was
1.27mm (σ = 0.88mm). This result, combined with the
average Hausdorff distance above, indicates there were few
long segments of follicle boundaries that exhibited signifi-
cant deviation from the ground truth.

The DICE coefficient is defined as twice the ratio of the
area of intersection of the automatically segmented region
and the expertly segmented region to the total area of the
automatically and expertly segmented regions,

DICE =
2 · |(α ∩ γ)|
|α|+ |γ|

, (7)

Expert Automatic

Expert Automatic

Expert Automatic

Figure 2. Examples of automatic segmenta-
tion results for polycystic ovaries.

where α is the set of pixels in the automatically segmented
region and γ is the set of pixels in the expertly segmented
region. This metric captures the amount ovarlap between
the two regions; it is 0.0 if the regions are disjoint and 1.0
if they are identical. For our images, average DICE coef-
ficient for a segmented image was 0.60 (σ = 0.16) which
shows a significant percentage of overlap between the folli-
cle regions of these two sets of images.

Figure 2 depicts example automatic segmentations. The
output of automatic segmentation is similar to the manually
traced expert segmentation. Table 3 summarizes the seg-
mentation validation results. A common mode of error is
the division of single follicles into multiple regions.

The recognition rate (RR) and misidentification rate
(MR) were also computed in order to characterize the abil-
ity of the segmentation algorithm to locate follicle regions
regardless of the boundary accuracy. Recognition rate is the
ratio of the number of actual follicles in the ground truth that
correspond to some automatically segmented follicle to the
actual number of expert traced follicles. The average recog-
nition rate for all our images was 83.1% (σ = 21.5%). The
original method of [10] achieved a RR of 78% (σ = 21%).

The misidentification rate is defined as the proportion of
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Table 4. Performance results for the linear
discriminant (LDC), k-nearest neghbor (KNN)
and support vector machine (SVM) PCO clas-
sifiers.

Classifier CorrectRate Sensitivity Specificity
LDC 92.86% 0.9091 0.9459
KNN 91.43% 0.9394 0.8919
SVM 91.43% 0.9091 0.9189

the total number of segmented regions that did not corre-
spond to an expert-identified follicle (false positives). The
average MR for our images was 31.1% (σ = 23.3%). The
original algorithm had an MR of 29% (σ = 25%) [10].

6.2. Classification results

The accuracy of the classification of the feature vectors
as polycystic or normal by the three classifiers as deter-
mined by the k-fold cross validation method is given in
Table 4. Sensitivity is the proportion of polycystic ovaries
for which there was a positive test. The linear discriminant
classifier exhibited a sensitivity of 0.909 and the KNN clas-
sifier exhibited a sensitivity of 0.9394.

Specificity is defined as the proportion of disease-free
ovaries for which there was a negative test. Consistently
high rates of specificity were exhibited by all three class-
fiers; the linear discriminant classifier achieved the best sen-
sitivity of 0.9459. Thus, the rates of both false positives and
false negatives are low for all three classifiers.

The column labeled CorrectRate in Table 4 is the over-
all classification rate and indicates the percentage of ovaries
for which a correct classification was made. The linear dis-
criminant classifier produced the highest classification rate
of 92.86%, while the KNN and SVM classifiers made cor-
rect decisions 91.43% of the time.

6.3. Follicle distribution

An algorithm was devised to automatically classify the
spatial distribution of follicles in an ovary as either random
or peripheral using the segmented follicle regions as input,
as described in Section 1.

For each ovary, the centroid of each segmented region
was found. The mean centroid (centroid of the centroids),
denoted mc, was also computed. The mean and standard
deviation of the distances between each region centroid and
mc were used as features for this classification. Higher or-
der moments such as skew and kurtosis of region centroid

Table 5. Results for classification of follicle
distribution as peripheral or random.

Classifier CorrectRate Sensitivity Specificity
LDC 81.25% 0.9167 0.5000
KNN 62.50% 0.7500 0.2500

distances to mc were not found to improve the classifica-
tion results presented below. Of the 33 polycystic ovaries in
our data set, only the 23 which exhibited either peripheral
or random distributions were used; 12 had random distri-
butions, and 11 had peripheral distributions. In Section 1
it was mentioned that there are other possible types of dis-
tributions; the remaining 10 ovaries in the data set were of
these types and were not used. Features were extracted and
classification was performed using the linear discriminant
classifier and the KNN classifier.

Table 5 shows the results of the follicle distribution
classification using a linear discriminant classifier, and k-
nearest neighbor classfier as determined by 10-fold cross
validation. A correct classification rate of 81.25% was ob-
tained using the linear discriminant classifier.

7. Discussion and Conclusion

A method for automatically discriminating between nor-
mal and polycystic ovarian follicle morphology was pre-
sented in three phases: follicle segmentation using a re-
gion growing algorithm, quantification of the attributes of
the segmented follicles using stereology, and classification
of the resulting feature vectors as either normal or polycys-
tic. The linear discriminant classifier outperformed KNN,
and SVM classifiers, but all the three classifiers performed
well. Classification rates were 92.86%, 91.43%, 91.43%
respectively.

A classifier for the distribution of the follicles inside
polycystic ovaries was developed. It used two features, the
mean and standard deviations of the distances of the cen-
troids of individual follicles to the mean centroid. A linear
discriminant classifier had a classification rate of 81.25% as
determined by 10-fold cross validation.

A criticism of this work might be that the follicle seg-
mentation algorithm which was used, despite having the
best known follicle recognition rate, lacks robustness. Our
group is currently investigating more robust follicle seg-
mentation algorithms.

Our results offer the promise of deploying a robust auto-
mated screening system for PCO which will improve the ra-
pidity and accuracy of diagnosis of Polycystic Ovarian Syn-
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drome and facilitate reduced danger from the severe compli-
cations that can arise from an undiagnosed condition.
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